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PREFACE

When I was appointed Director of Education for the Computer Science de-
partment at VU University, I became partly responsible for revitalizing our
CS curriculum. At that point in time, mathematics was generally experi-
enced by most students as difficult, but even more important, as being ir-
relevant for successfully completing your studies. Despite numerous efforts
from my colleagues from the Mathematics department, this view on math-
ematics has never really changed. I myself obtained a masters degree in
Applied Mathematics (and in particular Combinatorics) before switching to
Computer Science and gradually moving into the field of large-scale dis-
tributed systems. My own research is by nature highly experimental, and
being forced to handle large systems, bumping into the theory and practice
of complex networks was almost inevitable. I also never quite quit enjoying
material on (combinatorial) algorithms, so I decided to run another type of
experiment.

The experiment that eventually led to this text was to teach graph the-
ory to first-year students in Computer Science and Information Science. Of
course, I needed to explain why graph theory is important, so I decided to
place graph theory in the context of what is now called network science. The
goal was to arouse curiosity in this new science of measuring the structure
of the Internet, discovering what online social communities look like, obtain
a deeper understanding of organizational networks, and so on. While doing
so, teaching graph theory was just part of the deal.

No appropriate book existed, so I started writing lecture notes. As with
most experiments that I participate in (the hard work is actually done by my
students), things got a bit out of hand and I eventually found myself writ-
ing another book. Considering that my other textbooks are really on (dis-
tributed) computer systems and barely contain any mathematical symbols
(as, in fact, is also the case for most of my research papers), this book is to
be considered as somewhat exceptional. In fact, because I do not consider
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myself to be a mathematician anymore, I’m not quite sure how this book
should be classified. Is it math? Is it computer science? Does it matter?

The goal is to provide a first introduction into complex networks, yet in
a more or less rigorous way. After studying this material, a student should
have a pretty good idea of what makes real-world networks complex in-
stead of complicated, and can do a lot more than just handwaving when it
comes to explaining real-world phenomena. While getting to that point, I
also hope to have achieved two other goals: successfully teaching the foun-
dations of graph theory, and even more important, lowering the threshold
for studying mathematical material.

The latter may not be obvious when skimming through the text: it is full
of mathematical symbols, theorems, and proofs. I have deliberately chosen
for this approach, feeling confident that if enough and targeted attention
is paid to the language of mathematics in the first chapters, a student will
become aware of the fact that mathematical language is sometimes only in-
timidating: mathematicians’ barks are often worse than their bites. Students
who have so far followed my classes have indeed confirmed that they were
surprised at how much easier it was to access the math once they got over
the notations. I hope that this approach will last for long, making it at least
easier for many students to not immediately pull back when encountering
mathematical language in other texts.

Intended readership

This book has been written for first- or second-year undergraduates who
have taken the usual courses in mathematics as taught in high school. How-
ever, although I claim that the material is not inherently difficult, it will cer-
tainly require serious studying by most students, and certainly those for
which math does not come natural. As mentioned, I have deliberately cho-
sen to use the language of math because it is not only precise and compre-
hensive, but above all because I believe that at the level of this book, it will
lower the threshold for other mathematical texts. It should be clear that the
lecturer using this material may need to pay some special effort to encour-
age students. For most students, the language will turn out to be the hard
part, not the content.

Supplementary material

As said, this book is part of a course on graph theory and complex net-
works. Although it can be used for self-study, I encourage students and
their instructors to visit the accompanying Web site:

http://www.distributed-systems.net/gtcn/

x
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where lots of extra material can be found, including, most importantly, a
huge collection of exercises (with solutions). My goal is to expand this set
of exercises continuously. This is the most important reason not to have
included any exercises in the book: they can be readily obtained from the
site, and always up-to-date.

To make the material more accessible (and fun), but also to allow stu-
dents to do some basic analysis of larger graphs and networks, we have
been using Mathematica in combination with Combinatorica. All mate-
rial, including Mathematica notebooks and data on graphs are all avail-
able through the Web site. The site also has some extra tools for generating
graphs.

Of course, slides and handouts are available (all originating from LATEX
sources), as well as all the figures from the book. Perhaps most importantly,
an electronic version of the book itself is also available.

All material is freely accessible

Sometimes when you write a book, it makes a lot of sense to think big and
act commercially. Thinking big in this sense means you expect many people
to have access to your book. Acting commercially means that you try to
successfully market and sell your book. Sometimes, it’s enough to just think
big, knowing that acting commercially will certainly keep everything small.
When you write a book containing mathematical symbols, thinking big and
acting commercially doesn’t seem the right combination. I merely hope to
see the material to be used by many students and instructors everywhere
and to receive a lot of constructive feedback that will lead to improvements.
Acting commercially has never been one of strong points anyway.

However, freely accessible doesn’t mean that everyone has the right to
copy and spread the material, which I would find quite offensive. For this
reason, when requesting an electronic copy, the book will be watermarked
with your e-mail address. The watermark is part of the LATEX source, so it’s
pretty difficult to remove, although I do not have the illusion that removal
is impossible.

Finally, for those who still prefer to (also) have a hard-copy version of
the book (of course, without a watermark), such can be realized by placing
an order through the Web site. Further information can be found there. The
price is comparable to printing it yourself.
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On 11 September 2001 there was a malicious attack on the WTC towers in
New York City, eventually leading to the two buildings collapsing. What
is not known to many people, is that there were three transatlantic Inter-
net cables coming ashore close to the WTC and that an important Internet
switching station was damaged, along with two other important Internet re-
source centers. Peter Salus and John Quarterman [2002] had since long been
measuring the performance of the Internet by checking the reachability of a
fairly large collection of servers. In effect, they simply sent messages from
different locations on the Internet to these special computers and recorded
whether or not servers would be responding. If reachability was 100%, this
meant that all servers were up and running. If reachability was less, this
could mean that servers were either out-of-order, or that the communica-
tion paths to some of the servers were broken.

Immediately after the attack reachability dropped by about 9%. Within
30 minutes it had almost reached its old value again.

This example illustrates two important properties of the Internet. First,
even when disrupting what would seem as a vital location in the Internet,
such a disruption barely affects the overall communication capabilities of
the network. Second, the Internet has apparently been designed in such a
way that it takes almost no time to recover from a big disaster. This recov-
ery is even more remarkable when you consider that no manual repairs had
even started, but also that no designer had ever really anticipated such at-
tacks (although robustness was definitely a design criterion for the Internet).
The Internet demonstrated emergent self-healing behavior.1

The Internet is an example of what is now commonly referred to as a
complex network, which we can informally define as large collection of
interconnected nodes. A node can be anything: a person, an organization,
a computer, a biological cell, and so forth. Interconnected means that two
nodes may be linked, for example, because two people know each other, two
organizations exchange goods, two computers have a cable connecting the
two of them, or because two neurons are connected by means of a synapses
for passing signals. What makes these networks complex is that they are
generally so huge that it is impossible to understand or predict their overall
behavior by looking into the behavior of individual nodes or links.

As it turns out, complex networks are everywhere. Or, to be more pre-
cise, it turns out that if we model real-world situations in terms of networks,
we often discover new things. What is striking, is that many real-world net-
works look alike: the structure of the Internet resembles the organization
of our brain, but also the organization of online social communities. Where

1As we’ll encounter in later chapters, there’s no magic here: so-called routing algorithms
simply adjust their decisions when paths break.
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these similarities come from is still a mystery, just as it is often very difficult
to understand how certain networks were actually structured. Before we
go deeper into what complex networks actually entails, let’s first consider a
few general areas where networks play a vital role, starting with communi-
cation networks.

1.1 Communication networks

Not even so long ago, setting up a phone call to someone on the other side
of the world required the intervention of a human operator. Moreover, an
established connection was no guarantee for being able to understand each
other as the quality could be pretty bad. Many will recall these situations to
happen in the 70s and 80s of the previous century—really not that long ago.
Today, cell phones allow us to be contacted virtually anywhere and anytime,
and coverage continues to expand to even the most remote areas. Setting
up a high-quality voice connection over the Internet with peers anywhere
around the world is plain simple. Along these lines, we need merely wait a
while until it is also possible to have cheap, high-quality video connections
allowing us to experience our remote friends as being virtually in the same
room.

The world appears to be becoming smaller, and people are becoming
ever more connected. Obviously, telecommunication has played a crucial
role in establishing this connected world as it is commonly known, but with
the convergence of telecommunication and data networks (and notably the
Internet), it is difficult not to be connected anymore. Being connected has
profound effects for the dissemination of information. And as we shall see,
how we are connected plays a crucial role when it comes to the speed and
robustness of such dissemination, among many other issues.

Historical perspective

To have a connected world it is obvious that we need to communicate. If we
want this world to have significant coverage, long-distance communication
is obviously important. Unlike what many tend to believe, networks that
facilitate such communication have a long history, as described by Holz-
mann and Pehrson [1995]. Apart from well-known means of communica-
tion such as sending messengers or using pigeons, long-distance communi-
cation without the need to physically transport a message has always caught
the attention of mankind. Typically, such telegraphic communication used
to be done through fire beacons, mirrors (i.e., heliographic communication),
drums, and flags. Communication paths set up using such methods, for ex-
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ample by having communication posts organized at line-of-sight distances,
are known from Greek and Roman history.

However, it wasn’t until the end of the 18th Century that a system-
atic approach was developed to establish telegraphic communication net-
works. Such networks would consist of communication posts, of which pairs
would lie in each other’s line-of-sight. Typically, for these optical telegraphs,
distances between two posts would be in the order of tens of kilometers,
which was realistic given that high-quality telescopes could be used. An
important aspect in the design of these networks was the communication
protocol, which would prescribe the encoding of letters, but also what to do
if there was a transmission error. To make matters more concrete, consider
Figure 1.1 which shows a model of a shutter telegraph.

B

N

P

E

(a) (b)

Figure 1.1: (a) A model of a shutter station with six (open) shutters and (b) a few
examples of how letters were encoded.

As shown in Figure 1.1(b), letters are represented by specific combina-
tions of open and closed shutters. In this way, it became possible to trans-
mit messages over long distances. Of course, it became equally important
to think about encryption of messages, handling transmission errors, syn-
chronization between transmitter and reader (i.e., sender and receiver), and
so on. In other words, these seemingly primitive communication networks
had to deal with virtually the same issues as modern systems. Conceptually,
there is really no difference.
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By the middle of the 19th Century, Europe had optical telegraphic net-
works installed in the Scandinavian countries, France, England, Germany,
and others. Concerning topology, these networks were relatively simple:
there were only relatively few nodes (i.e., communication posts), and cycles
did not exist. That is, between any two nodes messages could travel only
through a unique path. Such networks are also known as trees.

Matters became serious when the electrical telegraph system emerged.
Instead of using vision, communication paths were realized through elec-
trical cables. The medium proved to be successful: by the middle of the
19th Century the electrical telegraph spanned more than 30,000 kilometers
in the United States, making it more than just a serious competitor to optical
telegraph systems. In fact, by then it was clear to most people that the op-
tical networks were heading towards a dead end. In 1866, networks in the
United States and Europe were successfully connected through a transat-
lantic cable (where earlier attempts had failed). Gradually, the concept of a
worldwide network was becoming reality.

From telephony to the Internet

The impact of a worldwide telephony network can only be underestimated.
From an end user’s perspective, it really didn’t matter anymore where you
were, but only that the other party was simultaneously online. In other
words, telecommunication networks realized location independency. This in-
dependency could be realized only because it was possible to establish a cir-
cuit between the two communicating parties: a communication path from
one party to the other with intermediate nodes operating as switches. In
most cases, these switches had fixed locations and every switch was physi-
cally linked to a few other switches. The combination of switches and links
form a communication network, which can be represented mathematically
by what is known as a graph, the object of study in this book.

As we already discussed, telecommunication networks were well estab-
lished when people began to think about connecting computers and thus
establishing data communication networks. Of course, the many existing
networks already made it possible to send data, for example, as a telegram.
The new challenge was to connecting these separate networks into logically
a single one that could be used by computers using the same protocol. This
led to the idea of building a communication system in which possibly large
messages were split into smaller units called packets. Each packet would be
tagged with the address of its destination and subsequently routed through
the various networks. It is important to note that packets from the same
message could each follow their own route to the destination, where they
would then be subsequently used to reassemble the original message.

6
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When a switch received a packet, it would only then decide to which
next switch the packet would be forwarded. This packet switching ap-
proach contrasts sharply with telecommunication networks in which two
end points would first establish a path and then subsequently let all com-
munication pass through that path, also referred to as circuit switching.

The first packet-switching network was established in 1969, called the
ARPANET (Advanced Research Projects Agency Network). It formed the
starting point of the present Internet. Key to this network were the inter-
face message processors (IMPs), special computers that provided a system-
independent interface for communication. In this way, any computer that
wanted to hook up to the ARPANET needed only to conform to the inter-
face of an IMP. IMPs would then further handle the transfer of packets. They
formed the first generation of network switches, or routers. To give an im-
pression of what this network looked like, Figure 1.2 shows a logical map of
IMPs and their connected computers as of April 1971.

SRI

UCLA RAND BBN
Har Bur

CMU

CASEMIT Lin
Utah Illinois

UCSB Stan SOC
ford

vard roughs

coln

Figure 1.2: A map of the ARPANET as of April 1971. Rectangles represent IMPs;
ovals are computers.

The ARPANET of 1971 constituted a network with 15 nodes and 19 links.
It is so small that we can easily draw it. We’ve passed that stage for the
Internet. (In fact, it is far from trivial to determine the size of today’s Inter-
net.) Of course, that network was also connected: it is possible to route a
packet from any source to any destination. In fact, connectivity could still
be established if a randomly selected single link broke. An important de-
sign criterion for communication networks is how many links need to fail
before the network is partitioned into several parts. For our example net-
work of Figure 1.2, it is clear that this number is 2. Rest assured that for the
present-day Internet, this number is much higher.

Likewise, we can ask ourselves how many nodes (i.e., switches or IMPs)
need to fail before connectivity is affected. Again, it can be seen that we need
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to remove at least 2 nodes before the network is partitioned. Surprisingly, in
the present-day Internet we need not remove that many nodes to establish
the same effect. This is caused by the structure of the Internet: researchers
have discovered that there are relatively few nodes with very many links.
These nodes essentially form an Achilles’ heel of the Internet. In subsequent
chapters, you will learn why.

The Web and Wikis

Next to the importance of e-mail and other Internet messaging systems,
there is little discussion about the impact of the World Wide Web. The Web
is an example of a digital information space: a collection of units of in-
formation, linked together into a network. The Web is perhaps the biggest
information space that we know of today: by the end of January 2005, it was
estimated to have at least 11.5 billion indexable pages [Gulli and Signorini,
2005], that is, pages that could be found and indexed by the major search
engines such as Google. Three years later, different studies (using different
metrics) indicate that we may be dealing with 30-50 billion pages. In any
case, we are clearly dealing with a phenomenal growth.

What makes information spaces such as the Web interesting for our stud-
ies, is that again these spaces form a network. In the case of the Web, each
page may (and generally will) contain links to other pages and corresponds
to a node in the network. What becomes interesting are questions such as:

• If we take the number of links pointing to a page as a measure of that
page’s popularity, what can we say about the number and intensity of
page popularity (i.e., what is the distribution of page popularity)?

• Does the Web also share characteristics with what are known as small
world networks: is it possible to navigate to any other page through
only a few links?

As we shall discuss extensively in Chapter 8, the Web indeed has its own
characteristics, some of which correspond to those in small worlds. How-
ever, there are also important differences. For example, it turns out that the
distribution of page popularity is very skewed: there are relatively few, but
extremely popular pages. In contrast, by far most pages are not popular,
yet there are many of such unpopular pages, which makes the collection of
unpopular pages by itself and interesting subject for study.

An information space related to the Web is that of the online encyclo-
pedia Wikipedia. By the end of 2007, over 7.5 million pages were counted,
written in more than 250 different languages. The English Wikipedia is by
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far the largest, with more than 2 million articles. It is also the most popu-
lar one when measuring the number of page requests: 45% of all Wikipedia
traffic is directed towards the English version [Urdaneta et al., 2009]. Again,
Wikipedia forms a network with its pages as nodes and references to other
pages as links. Like the Web, it turns out that there are few very popu-
lar pages, and many unpopular ones (but so many that they cannot be ig-
nored) [Voss, 2005].

1.2 Social networks

Next to communication networks, networks that are built around people
have since long been subject of study. We first consider modern social net-
works that have come into play as online communities facilitated by the
Internet.

Online communities

In their landmark essay, Licklider and Taylor [1968] foresaw that computers
would form a major communication device between people leading to the
online communities much like the ones we know today. Indeed, perhaps
one of the biggest successes of the Internet has been the ability to allow
people to exchange information with each other by means of user-to-user
messaging systems [Wams and van Steen, 2004]. The best known of these
systems is e-mail, which has been around ever since the Internet came to
life. Another well-known example is network news, through which users
can post messages at electronic bulletin boards, and to which others may
subsequently react, leading to discussion threads of all sorts and lengths.
More recently instant messaging systems have become popular, allowing
users to directly and interactively exchange messages with each other, pos-
sibly enhanced with information on various states of presence.

It is interesting to observe that from a technological point of view, most
of these systems are really not that sophisticated and are still built with tech-
nology that has been around for decades. In many ways, these systems are
simple, and have stayed simple, which allowed them to scale to sizes that
are difficult to imagine. For example, it has been estimated that in 2006 al-
most 2 million e-mail messages were sent every second, by a total of more
than 1 billion users. Admittedly, more than 70% of these messages were
spam or contained viruses, but even then it is obvious that a lot of online
communication took place. These numbers continue to rise.

More than the technology, it is interesting to see what these communi-
cation facilities do to the people who use them. What we are witnessing
today is the rise of online communities in which people who have never
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met each other physically are sharing ideas, opinions, feelings, and so on.
In fact, Dodds et al. [2003] have shown that also for online communities
we are dealing with what is known as a small world. To put it simply, a
small world is characterized by the fact that every two people can reach
each other through a chain of just a handful of messages. This phenomenon
is also known as the “six degrees of separation” [Watts, 2003] to which we
will return extensively later.

Dodds et al. were interested to see whether e-mail users were capable
of sending a message to a specific person without knowing that person’s
address. In that case, the only thing you can do is send the message to
one of your acquaintances, hoping that he or she is “closer” to the target
than you are. With over 60,000 users participating in the experiment, they
found that 384 out of the approximately 24,000 message chains made it to
designated target people (there were 18 targets from 13 different countries
all over the world). Of these 384 chains, 50% had a length smaller than 5–7,
depending on whether the target was located in the same country as where
the chain started.

What we have just described is the phenomenon of messages traveling
through a network of e-mail users. Users are linked by virtue of knowing
each other, and the resulting network exhibits properties of small worlds,
effectively connecting every person to the others through relatively small
chains of such links. Describing and characterizing these and other net-
works forms the essence of network science.

Traditional social networks

Long before the Internet started to play a role in many people’s lives, so-
ciologists and other researchers from the humanities have been looking at
the structure of groups of people. In most cases, relatively small groups
were considered, necessarily because analysis of large groups was often not
feasible.

An important contribution to social network analysis came from Jacob
Moreno who introduced sociograms in the 1930s. A sociogram can be seen
as a graphical representation of a network: people are represented by dots
(called vertices) and their relationships by lines connecting those dots (called
edges). An example we will come across in Chapter 9 is one in which a class
of children are asked who they like and dislike. It is not hard to imagine
that we can use a graphical representation to represent who likes whom, as
shown in Figure 1.3.

Decades later, under the influence of mathematicians, sociograms and
such were formalized into graphs, our central object of study. As men-
tioned, graphs are mathematical objects, and as such they come along with
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Figure 1.3: The representation of a sociogram expressing affection between people.
The absence of a link indicates neutrality.

a theoretical framework that allows researchers to focus on the structure of
networks in order to make statements about the behavior of an entire social
group.

Social network analysis has been important for the further development
of graph theory, for example with respect to introducing metrics for identi-
fying importance of people or groups. For example, a person having many
connections to other people may be considered relatively important. Like-
wise, a person at the center of a network would seem to be more influential
than someone at the edge. What graph theory provides us are the tools to
formally describe what we mean by relatively important, or having more
influence. Moreover, using graph theory we can easily come up with al-
ternatives for describing importance and such. Having such tools has also
facilitated being more precise in statements regarding the position or role
that person has within a community. We will come across such formalities
in Chapter 9.

1.3 Networks everywhere

Communication networks and social networks are two classes of networks
that many people are aware of. However, there are many more networks
as shown in Figure 1.4. What should immediately become clear is that net-
works occur in very different scientific disciplines: economics, organiza-
tional studies, social sciences, biology, logistics, and so forth. What’s more,
the terminology that is used to describe the different networks in each disci-
pline is largely the same, which makes it relatively easy for members of dif-
ferent communities to cooperate in understanding the foundations of com-
plex networks. What is even more striking is the fact that networks from
very different disciplines often look so much alike. This common terminol-
ogy and the strong resemblance of networks across scientific disciplines has
been instrumental in boosting network science.
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Network Vertices Edges Description
Airline
trans-
portation

airports flights Consider the scheduled flights (of a
specific) carrier between two airports.

Street
plans

junctions road
segment

A road segment extends exactly
between two junctions. A variation is to
distinguish between one-way and
two-way segments.

Train
trans-
portation

stations connec-
tion

Two stations are connected only if there
is a train connection scheduled that
does not pass (possibly without
stopping) any intermediate stations.

Railway
network

junctions track
segment

Consider the actual railway tracks.
Where track segments merge or cross,
we have junctions.

Brain neurons synapses Each neuron can be considered to
consist of inputs (called dendrites) and
outputs (called axon). Synapses carry
electrical signals between neurons.

Genetic
networks

genes transcrip-
tion
factor

In genetic (regulatory) networks we
model how genes influence each other,
in particular, how the product of one
gene determines the rate at which
another gene is transcribed (i.e., at
which rate it produces its own output).

Ant
colonies

junctions phero-
mone
trails

In order for ants to tell each other where
sources of food are, they produce
pheromones which is a chemical that
can be picked up by other ants.
Pheromones jointly constitute paths.

Citation
networks

authors citation In scientific literature, it is common
practice to (extensively) refer to related
published work and sources of
statements, in turn leading to citation
networks.

Tele-
phone
calls

number call Networks of phone calls reflect (mostly)
pairs of people exchanging information,
thus forming a social network
technically represented by phone
numbers and actual calls.

Reputa-
tion
networks

people rating In electronic trading networks such as
e-Bay, buyers rate transactions. As
buyers in turn can also be sellers, we
obtain a network in which rates reflect
the reputation between people.

Figure 1.4: Examples of networks.
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Understanding complex networks requires the right set of tools. In our
case, the tools we need come from a field of mathematics known as graph
theory. In this book, you’ll learn about the essential elements of graph the-
ory in order to obtain insight into modern networks. Next to that, we dis-
cuss a number of concepts that are normally not found in traditional text-
books on graph theory, such as random networks and various metrics for
characterizing graphs.

1.4 Organization of this book

In the following chapters we’ll go through the foundations of graph theory
and move on into parts that are normally discussed in more advanced text-
books on networks. The goal of this text is to provide only an awareness
and basic understanding of complex networks, for which reason none of
the advanced mathematics that accompany complex networks is discussed.
To make matters easier, special notes are included that generally provide
further information, such as the following:

Note 1.1 (More information)
This is an example of how additional side notes are presented. Text in such
notes can always be skipped as notes do not affect the flow of the main text.

There are different types of notes:

Study tips: Studying graph theory is not always easy, not because the ma-
terial is so difficult, but because identifying the best approach to tackle
a specific problem may not be obvious. I have compiled various tips
based on experience in teaching (and once myself learning) graph the-
ory. Students are strongly encouraged to read these tips and put them
to their own advantage.

Mathematical language: For many people, mathematics is and remains a
barrier to accessing otherwise interesting material. The language of
mathematicians as well as the commonly used tools and techniques
are sometimes even intimidating. However, there are so many cases in
which the barrier is only virtual. The only thing that is needed is get-
ting acquainted with some basics and learning how to apply them. In
notes focusing on mathematical language, I generally take a step back
on previously presented material and translate the math into plain En-
glish, explain mathematical notations, and so forth. These notes are
meant to help understand the math, but do not serve as a replacement.
Mathematics simply offers a level of precision that is difficult to match
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with (informal) English, yet the notations should not be something to
keep anyone away from reaching a deeper understanding.

Proof techniques: Notably in Chapters 2 and 3 some time is taken to ex-
plain a bit more about how to prove theorems. One of the main diffi-
culties that I experienced when first studying graph theory and more
generally, combinatorics, was finding structure in proofs. As in virtu-
ally any other field of mathematics, graph theory uses a whole array
of proof techniques. In these notes, the most commonly used ones are
made explicit, aiming at creating a better awareness of available tech-
niques so that students may have less of a feeling of walking in the
dark when it comes to solving mathematical problems.

Algorithmics: Graph theory involves many algorithms, such as, for ex-
ample, finding shortest paths, identifying reachable vertices, deter-
mining similarity, and so on. Traditionally, algorithms have always
been described using math, but that language is not particularly well-
equipped for expressing the flow of control inherent to most algo-
rithms. In algorithmic notes some of graph algorithms are expressed
in pseudo code, roughly following a traditional programming lan-
guage. In virtually all cases, this description leads to a better sepa-
ration of the actual math and the steps comprising an algorithm.

More information: These type of notes contain a wide variety of informa-
tion, ranging from additional background material to more difficult
mathematical material such as proofs. In all cases, these notes do not
interfere with the main text and may be skipped on first reading.

Proofs that have been marked “(*)” may be skipped at first reading: they are
to be considered the tougher parts of the material.

The book is roughly organized into two parts. The first parts covers
Chapters 2–6. These chapters roughly cover the same material that can usu-
ally be found in standard textbooks on graph theory. Except for Chapter 6,
this material is to be considered essential for studying graph theory and
should in any case be covered. Chapter 6 can be considered as a compi-
lation of various metrics from different disciplines to characterize graphs,
their structures, and the positions that different nodes have in networks.

The second part consists of Chapters 7–9 and discusses (graph models
of) real-world networks. Notably Chapter 7 on random networks contains
material that is often presented only in more advanced textbooks yet which
I consider to be crucial for raising scientific interest in modern network sci-
ence. Random networks are important from a conceptual modeling point
of view, from an analysis point of view, and are important for explaining
the emergent behavior we see in real-world systems. By keeping explana-
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tions as simple as possible and attempting to stick only to the core elements,
this material should be relatively easy to access for anyone having essen-
tially learned only high-school mathematics. The two succeeding chapters
discuss theory and practice of real-world systems: computer networks and
social networks, respectively.
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In the previous chapter we have informally introduced the notion of a net-
work and have given several examples. In order to study networks, we need
to use a terminology that allows us to be precise. For example, when we
speak about the distance between two nodes in a network, what do we re-
ally mean? Likewise, is it possible to specify how well connected a network
is? These and other statements can be formulated accurately by adopting
terminology from graph theory. Graph theory is a field in mathematics that
gained popularity in the 19th and 20th century, mainly because it allowed to
describe phenomena from very different fields: communication infrastruc-
tures, drawing and coloring maps, scheduling tasks, and social structures,
just to name a few.

We will first concentrate only on the foundations of graph theory. To this
end, we will use the language of mathematics, as it allows us to be precise
and concise. However, to many this language with its many symbols and
often peculiar notations can easily form an obstacle to grasp the essence
for what it is being used. For this reason, we will gently and gradually
introduce notations while providing more verbose descriptions alongside
the more formal definitions. You are encouraged to pay explicit attention
to the formalities: in the end, they will prove to be much more convenient
to use than verbose verbal descriptions. The latter often simply fail to be
precise enough to completely understand what is going on. It is also not
that difficult, as most notations come directly from set theory.

2.1 Formalities

Let us start with discussing what is actually meant by a network. To this
end, we first concentrate on some basic formal concepts and notations from
graph theory, together with a few fundamental properties that characterize
networks. After having studied this section, you will have already learned
a lot about the world of graphs and should also feel more comfortable with
mathematical notations.

Graphs and vertex degrees

As said, the networks that have been introduced so far are mathematically
known as graphs. In its simplest form, a graph is a collection of vertices
that can be connected to each other by means of edges. In particular, each
edge of graph joins exactly two vertices. Using a formal notation, a graph is
defined as follows.

Definition 2.1: A graph G consists of a collection V of vertices and a collection
edges E, for which we write G = (V, E). Each edge e ∈ E is said to join two
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vertices, which are called its end points. If e joins u, v ∈ V, we write e = 〈u, v〉.
Vertex u and v in this case are said to be adjacent. Edge e is said to be incident
with vertices u and v, respectively.

We will often write V(G) and E(G) to denote the set of vertices and edges
associated with graph G, respectively. It is important to realize that an edge
can actually be represented as an unordered tuple of two vertices, that is,
its end points. For this reason, we make no distinction between 〈v, u〉 and
〈u, v〉: they both represent the fact that vertex u and v are adjacent.

This definition may already raise a few questions. First of all, is it pos-
sible that an edge joins the same vertices, that is, can an edge form a loop?
There is nothing in the definition that prevents this, and indeed, such edges
are allowed. Likewise, you may be wondering whether two vertices u and v
may be joined by multiple edges, that is, a set of edges each having u and v
as their end points. Indeed, this is also possible, and we shall be discussing
a few examples shortly. A graph that does not have loops or multiple edges
is called simple.

Likewise, there is nothing that prohibits a graph from having no vertices
at all. Of course, in that case there will also be no edges. Such a trivial graph
is called empty. Another special case is formed by a simple graph having n
vertices, with each vertex being adjacent to every other vertex. This graph
is also known as a complete graph. A complete graph with n vertices is
commonly denoted as Kn. Finally, the complement of a graph G, denoted
as G is the graph obtained from G by removing all its edges and joining
exactly those vertices that were not adjacent in G. It should be clear that if
we take a graph G and its complement G “together,” we obtain a complete
graph. Taking two graphs “together” will be made more precise later in this
chapter.

As an aside, notice that when we write 〈u, v〉, we can say only that u
and v are adajacent, that is, that there is at least one edge that joins the two.
Strictly speaking, it is not possible using this notation to distinguish differ-
ent edges that all happen to join both u and v. If we wanted to make that dis-
tinction, we would have to write something like e1 = 〈u, v〉 and e2 = 〈u, v〉.
In other words, we would have to explicitly enumerate the edges that join u
and v. Of course, when dealing with simple graphs, there can be no mistake
about which edge we are considering when we write 〈u, v〉. Here we see an
example where mathematics allows us to be precise and unambiguous. We
will encounter many more of such examples.

As in so many practical situations, it is often convenient to talk about
your neighbors. In graph-theoretical terms, the neighbors of a vertex u are
formed by the vertices that are adjacent to v, or, in other words, those ver-
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tices to which v has been joined by means of an edge. We can formulate this
precisely using formal mathematical notations as follows.

Definition 2.2: For any graph G and vertex v ∈ V(G), the neighbor set N(v) of
v is the set of vertices (other than v) adjacent to v, that is

N(v) def
= {w ∈ V(G) | v 6= w, ∃e ∈ E(G) : e = 〈u, v〉}

Note 2.1 (Mathematical language)
The formal notation is Definition 2.2 is very precise, yet can be somewhat in-
timidating. Let us decypher it a bit. First, we use the symbol def

= to express
that what is written on the left-hand side is defined by what is written on the
right-hand side. In other words,

N(v) def
= . . .

is nothing but accurately stating that N(v) is defined by what follows on the
right hand of def

= . Recall that the symbol ‘∃’ is the existential quantifier used
in set theory to express statements like “there exists an ...” Keeping this in mind,
you should now be able to see that the right-hand side translates into English
to the following statement:

The set of vertices w in G, with w not equal to v, such that there exists an
edge e in G that joins v and w.

We will be encountering many more of these formal statements. If you have
trouble correctly interpreting them, we encourage you to make translations like
the previous one to actually practice reading mathematics. After a while, you
will notice that these translations come naturally by themselves.

The word “graph” comes from the fact that it is often very convenient to
use a graphical representation, as shown in Figure 2.1. In this example, we
have a graph G with eight vertices and a total of 18 edges. Each vertex is
represented as a black dot whereas edges are drawn as lines. When drawing
a graph, it is often convenient to add labels. Both vertices and edges can be
labeled. We shall generally not use subscripts when labeling vertices and
edges in our drawings of graphs. This means that a label such as e13 from
Figure 2.1 is the same as e13 in our text.

It should be clear that there may be many different ways to draw a graph.
In the first place, there is no reason why we would stick to just dots and
lines, although it is common practice to do so. Secondly, there are, in prin-
ciple, no rules concerning on where to position the drawn vertices, nor are
there any rules stating that a line should be drawn in a straight fashion.
However, the way that we draw graphs is often important when it comes to
visualizing certain aspects. We return to this issue extensively in Section 2.4.
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e1

e10

e12

e13

e15

e16

e17

e18

e2

e4

e5

e6

e8

e9

v1

v2

v3

v4

v5

v6

v7

v8

e14
e7

e3

e11

V(G) = {v1, . . . , v8}
E(G) = {e1, . . . , e18}
e1 = 〈v1, v2〉 e10 = 〈v6, v7〉
e2 = 〈v1, v5〉 e11 = 〈v5, v7〉
e3 = 〈v2, v8〉 e12 = 〈v6, v8〉
e4 = 〈v3, v5〉 e13 = 〈v4, v7〉
e5 = 〈v3, v4〉 e14 = 〈v7, v8〉
e6 = 〈v4, v5〉 e15 = 〈v4, v8〉
e7 = 〈v5, v6〉 e16 = 〈v2, v3〉
e8 = 〈v2, v5〉 e17 = 〈v1, v7〉
e9 = 〈v1, v6〉 e18 = 〈v5, v8〉

Figure 2.1: An example of a graph with eight vertices and 18 edges.

An important property of a vertex is the number of edges that are inci-
dent with it. This number is called the degree of a vertex.

Definition 2.3: The number of edges incident with a vertex v is called the degree of
v, denoted as δ(v). Loops are counted twice.

Let us consider our example from Figure 2.1 again. In this case, because
there are four edges incident with vertex v1, we have that δ(v1) = 4. We can
complete the picture by considering every vertex, which gives us:

Vertex Degree Incident edges Neighbors
v1 4 〈v1, v2〉, 〈v1, v5〉, 〈v1, v6〉, 〈v1, v7〉 v2, v5, v6, v7
v2 4 〈v1, v2〉, 〈v2, v3〉, 〈v2, v5〉, 〈v2, v8〉 v1, v3, v5, v8
v3 3 〈v2, v3〉, 〈v3, v4〉, 〈v3, v5〉 v2, v4, v5
v4 4 〈v3, v4〉, 〈v4, v5〉, 〈v4, v7〉, 〈v4, v8〉 v3, v5, v7, v8
v5 7 〈v1, v5〉, 〈v2, v5〉, 〈v3, v5〉, 〈v4, v5〉, 〈v5, v6〉, v1, v2, v3, v4, v6,

〈v5, v7〉, 〈v5, v8〉 v7, v8
v6 4 〈v1, v6〉, 〈v5, v6〉, 〈v6, v7〉, 〈v6, v8〉 v1, v5, v7, v8
v7 5 〈v1, v7〉, 〈v4, v7〉, 〈v5, v7〉, 〈v6, v7〉, 〈v7, v8〉 v1, v4, v5, v6, v8
v8 5 〈v2, v8〉, 〈v4, v8〉, 〈v5, v8〉, 〈v6, v8〉, 〈v7, v8〉 v2, v4, v5, v6, v7

When adding the degrees of all vertices from G, we find that the total sum
is 36, which is exactly twice the number of edges. This brings us to our first
theorem:

Theorem 2.1: For all graphs G, the sum of the vertex degrees is twice the number
of edges, that is,

∑
v∈V(G)

δ(v) = 2 · |E(G)|
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Proof. When we count the edges of a graph G by enumerating for each ver-
tex v of G the edges incident with that vertex v, we are counting each edge
exactly twice. Hence, ∑v∈G δ(v) = 2 · |E(G)|.

Note 2.2 (Mathematical language)
Again, we encounter some formal mathematical notations. In this case, we use
the standard symbol ∑ as an abbreviation for summation. Thus, ∑n

i=1 xi is the
same as x1 + x2 + x3 + · · ·+ xn. In many cases, the summation is simply over
all elements in a specific set, such as in our example where we consider all the
vertices in a graph. In that case, if we assume that V(G) consists of the vertices
v1, v2, . . . , vn, the notation ∑v∈V(G) δ(v) is to be interpreted as:

∑
v∈V(G)

δ(v) def
= δ(v1) + δ(v2) + · · ·+ δ(vn)

Note, furthermore, that we use the notation |S| to denote the size of a set S. In
our example, |E(G)| thus denotes the size of E(G) or, in other words, the total
number of edges in graph G.

There is also an interesting corollary that follows from this property, namely
that the number of vertices with an odd degree must be even. This can
be easily seen if we split the vertices V of a graph into two groups: Vodd
containing all vertices with odd degree, and Veven with all vertices having
even degree. Clearly, if we take the sum of all the degrees from vertices in
Vodd, and those from Veven, we will have summed up all vertex degrees, that
is,

∑
v∈Vodd

δ(v) + ∑
v∈Veven

δ(v) = ∑
v∈V

δ(v)

which is even. Because the sum of even vertex degrees is obviously even,
we know that ∑v∈Veven δ(v) is even. This can only mean that ∑v∈Vodd

δ(v)
must also be even. Combining this with the fact that all vertex degrees in
Vodd are odd, we conclude that the number of vertices with odd degree must
be even, that is, |Vodd| is even. We have thus just proven:

Corollary 2.1: For any graph, the number of vertices with odd degree is even.

The vertex degree is a simple, yet powerful concept. As we shall see
throughout this text, vertex degrees are used in many different ways. For
example, when considering social networks, we can use vertex degrees to
express the importance of a person within a social group. Also, when we
discuss the structure of real-world communication networks such as the In-
ternet, it will turn out that we can a learn a lot by considering the distribution
of vertex degrees. More specifically, by simply ordering vertices by their
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vertex degree, we will be able to obtain insight in how such a network is
actually organized.

Degree sequence

Listing the vertex degrees of a graph gives us a degree sequence. The vertex
degrees are usually listed in descending order, in which case we refer to an
ordered degree sequence. For example, if we consider the eight vertices of
graph G from Figure 2.1, we have the following vertex degrees

vertex: v1 v2 v3 v4 v5 v6 v7 v8
degree: 4 4 3 4 7 4 5 5

which, when ordering these degrees in descending order, leads to the or-
dered degree sequence

[7, 5, 5, 4, 4, 4, 4, 3]

If every vertex has the same degree, the graph is called regular. In a k-
regular graph each vertex has degree k. As a special case, 3-regular graphs
are also called cubic graphs.

When considering degree sequences, it is common practice to focus only
on simple graphs, that is, graphs without loops and multiple edges. An
interesting question that comes to mind is when we are given a list of num-
bers, is there also a simple graph whose degree sequence corresponds to
that list? There are some obvious cases where we already know that a given
list cannot correspond to a degree sequence. For example, we have just
proven that the sum of vertex degrees is always even. Therefore, a mini-
mal requirement is that the sum of the elements of that list should be even
as well. Likewise, it is not difficult to see that, for example, the sequence
[4, 4, 3, 3] cannot correspond to a degree sequence. In this case, if this were
a degree sequence, we would be dealing with a graph of four vertices. The
first vertex is supposed to have four incident edges. In the case of simple
graphs, each of these edges should be incident with a different vertex. How-
ever, there are only three vertices left to choose from, so [4, 4, 3, 3] can never
correspond to the degree sequence of a simple graph.

Of course, taking a trial-and-error approach to see whether a list corre-
sponds to a degree sequence is not the way to go. Fortunately, there is a
systematic way to see whether a given list of numbers corresponds to the
degree sequence of a simple graph, in which case the sequence is said to be
graphic. Let’s return to our graph from Figure 2.1, but now assume that we
are given only the list [7, 5, 5, 4, 4, 4, 4, 3]. We ask ourselves whether this list
is graphic. If this is the case, we should be able to construct a graph that has
this degree sequence. Note that this graph need not necessarily be the same
as the one from Figure 2.1. This is how we can address this issue.
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• Consider [7, 5, 5, 4, 4, 4, 4, 3]. If this sequence is graphic correspond-
ing to a graph, say G1, then we should be able to construct G1 from
another graph G2 by adding a vertex v1 to G2 and joining v1 to seven
other vertices from G2. This would then explain that G1 has a vertex
with highest degree 7. Note that for this construction to work, it is
necessary that we can construct G2.
It should be clear that if we do not change the ordering of vertex de-
grees, that the degree sequence of G2 is equal to [4, 4, 3, 3, 3, 3, 2]. First,
it contains one element less than the degree sequence of G1. Second,
the first element of the degree sequence of G2 corresponds to the sec-
ond element of G1’s degree sequence: it’s the degree of the same ver-
tex, yet for G2 it should be one less than in G1 because this vertex is not
yet joined to the added vertex v1. Likewise, the second element of G2’s
degree sequence corresponds to the third one in the degree sequence
of G1, and so on.

• If [4, 4, 3, 3, 3, 3, 2] is graphic we can apply the same trick: G2 should
be constructable from a graph G3 by adding a vertex v2 and joining v2
to four vertices from G3. Following a completely analogous procedure
as before, v2 is joined to the vertices from G3 such that these vertices
will then have vertex degree 4, 3, 3, and 3, respectively. This can only
mean that in G3 they will have degree 3, 2, 2, and 2, respectively, lead-
ing to the following list: [3, 2, 2, 2, 3, 2].
Note that in this example, the fifth element is the same as the sixth
element in the degree sequence of G2. The first four elements represent
vertices that will be joined to the new vertex v2. The other elements
represent vertices that remain untouched, and will thus have the same
number of incident edges in G2.

• Continuing this line of reasoning, if [3, 3, 2, 2, 2, 2] is the (now ordered)
degree sequence of G3, then we should be able to construct G3 from a
graph G4 to which we have added a vertex v3. This vertex would
be joined to the vertices having degree 2, 1, and 1 in G4, respectively,
yielding the list [2, 1, 1, 2, 2]. Again, note that this list contains one
element less than the degree sequence of G3, but that now its fourth
and subsequent elements represent vertices that have the same vertex
degree in G4 and G3.

• We now have that if ordered list [2, 2, 2, 1, 1] is graphic, then so should
[1, 1, 1, 1], corresponding to a graph G5.

• Likewise, if [1, 1, 1, 1] is graphic, then so should the list of vertex de-
grees [0, 1, 1] correspond to a graph G6.

• Finally, if the ordered list [1, 1, 0] is graphic, then so should [0, 0],
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which is true: it is a graph G7 with two vertices and no edges.

We can safely conclude that the sequence [7, 5, 5, 4, 4, 4, 4, 3] indeed corre-
sponds to a simple graph. The construction of the graph G1 is illustrated
in Figure 2.2 which shows how each graph G1, G2, . . . , G6 is constructed by
adding a vertex to the previous one, starting from graph G7. The answer to
whether G1 is the same as the graph from Figure 2.1 is a question we defer
until later. In fact, it turns out to be question that is generally not easy to
resolve.

G7 G6 G5

G4 G3

G2 G1

Figure 2.2: The construction of graph G1 from previous graphs based on degree
sequences.

Intuitively, it should be clear that we have just introduced a systematic
way of checking whether a given list of numbers corresponds to the degree
sequence of a graph. It also forms the essence of the proof of the following
theorem that tells us when a list of numbers is indeed graphic.

Theorem 2.2 (Havel-Hakimi): Consider a list s = [d1, d2, . . . , dn] of n numbers
in descending order. This list is graphic if and only if s∗ = [d∗1 , d∗2 , . . . , d∗n−1] of
n− 1 numbers is graphic as well, where

d∗i =

{
di+1 − 1 for i = 1, 2, . . . , d1

di+1 otherwise
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Note 2.3 (Mathematical language)
Note that this theorem consists of two statements:

1. if s∗ is graphic then so is s
2. if s is graphic then so is s∗

This is the meaning of “if and only if,” which is often abbreviated to iff. We will
encounter more of such theorems, and in order to prove them correct, proofs in
these cases will always consist of two parts.

Proof of Theorem 2.2. To prove this theorem, let us first assume that s∗ is
graphic. We then need to show that s is also graphic. Let G∗ be a sim-
ple graph with degree sequence s∗. We now construct a simple graph G
from G∗ with degree sequence s as follows (and in doing so, we show that
s is graphic). Take G∗ and add a vertex u. For readability, let k = d1
and consider the k vertices v1, v2, . . . , vk from G∗ having respectively de-
gree d∗1 , d∗2 , . . . , d∗k . We then join these vertices to the newly added vertex
u. Obviously, u now has degree k, but also each vertex vi now has degree
d∗i + 1. Because all other vertices of G∗ are not joined with u, their vertex
degree is left unaffected. As a consequence, the newly constructed graph G
has degree sequence [k, d∗1 + 1, d∗2 + 1, . . . , d∗k + 1, d∗k+1, . . . , d∗n−1], which is
precisely s.

Let us now consider the opposite: if s is graphic, we need to show that
s∗ is so as well. In other words, we need to find a graph G∗ that has degree
sequence s∗. To this end, we consider three different sets of vertices from
G. Let u be a vertex with degree k = d1. Let V = {v1, v2, . . . , vk} be the re-
spective vertices with the k next highest degrees d2, d3, . . . , dk+1. Finally, let
W = {w1, w2, . . . , wn−k−1} be the remaining n− k− 1 vertices with degree
dk+2, dk+3, . . . , dn, respectively.

Consider the graph G∗ by removing u from G, along with the k edges
incident with u. If each of these edges is incident with one of the vertices
from V, then obviously G∗ is a graph with degree sequence (d2 − 1, d3 −
1, . . . , dk+1 − 1, dk+2, . . . , dn), which is precisely s∗.

Now consider the situation that u is adjacent to a vertex from W, say wi.
If for some vertex vj ∈ V, the degree of vj and wi are the same, i.e., δ(wi) =
δ(vj), then we can simply swap wi and vj in the original construction of the
sets V and W, meaning that 〈u, wi〉 is now an edge incident with a vertex
from V instead of W. However, if δ(wi) < δ(vj) (i.e., δ(wi) is less than the
degree of any vertex from V) we cannot apply such an exchange.

The problem that we need to solve is that there is now a vertex vj not ad-
jacent to u whose degree will remain the same instead of being decremented
by 1. Likewise, by simply removing u we would decrease the degree of wi,
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while we would like to see it unaffected if we want to realize the degree
sequence s∗. Note, however, that because δ(vj) > δ(wi), there is a vertex x
adjacent to vj but not adjacent to wi (note also that x 6= u), as shown in Fig-
ure 2.3(a). In constructing G∗ we now first remove edges 〈u, wi〉 and 〈vj, x〉,
and then add edges 〈x, wi〉 and 〈u, vj〉, leading to the situation shown in Fig-
ure 2.3(b). The effect is that we now have a graph G′ in which u is adjacent
to vj instead of wi, but without affecting the degree of u, vj, x, or wi. In other
words, G′ has the degree sequence s. If u is now adjacent to vertices only
from V, we have already shown that s∗ is graphic. If u is still adjacent to a
vertex from W, we apply the same method to construct a graph G′′ in which
u is adjacent to one more vertex from V. If necessary, we repeat this method
until u is adjacent only to vertices from V, at which point we know that s∗

is graphic.

u
v j

x

wi u
v j

x

wi

(a) (b)

Figure 2.3: Changing a graph so that it meets the sets V and W of the Havel-Hakimi
proof.

Note 2.4 (Proof techniques)
The proof of the Havel-Hakimi theorem illustrates a number of important issues
in graph theory. In the first place, it is a proof by construction. In the case of
the Havel-Hakimi theorem this means that we show that the theorem holds by
actually constructing a graph from a given degree sequence. In general, prov-
ing properties by construction is very powerful: not only do we demonstrate
the existence of a property, we also show how to get there. In contrast, with non-
constructive proofs we merely prove that some property must exist, often by first
assuming that it does not exist and subsequently arriving at a contradiction. We
will come across more of these proofs, but also ones in which we merely show
that a property must exist, without giving a graph that has the specific property.

Another important issue in proving the Havel-Hakimi theorem, is that we
show the power of visualization. Visualizing situations, either explicitly on
paper or otherwise merely in your mind, is particularly useful in the case of
graphs, and should come as no surprise. When graphs are studied for the first
time, it is tempting to draw complete examples, that is, graphs in which each
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edge joins two vertices. However, as you become more experienced, it turns
out that sketching graphs as is done in Figure 2.3 is actually more illustrative as
these drawings reflect the essence of what you are trying to prove. Irrelevant
details are thus avoided. You are encouraged to go for the sketches.

Note that two graphs with the same degree sequence need not be the
same. In other words, when given a degree sequence, it may be possible to
construct several, different, graphs that have that sequence, as is illustrated
in Figure 2.4. The two graphs in Figure 2.4(a) have the same degree se-
quence, yet they are truly different. The same holds for the two graphs from
Figure 2.4(b). We return to the notion of similarity of graphs in Section 2.2.

(a)

(b)

Figure 2.4: Different graphs with the same ordered degree sequence:
(a) [3, 3, 2, 2, 2], and (b) [7, 5, 5, 4, 4, 4, 4, 3].

Subgraphs and line graphs

Another important concept of graphs is that of a subgraph. A graph H is a
subgraph of G if H consists of a subset of the edges and vertices of G, such
that the end points of edges in H are also contained in H. Strictly speaking,
we have the following:
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Definition 2.4: A graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G)
such that for all e ∈ E(H) with e = 〈u, v〉, we have that u, v ∈ V(H). When H is
a subgraph of G, we write H ⊆ G.

As an example, Figure 2.5 shows a so-called cubic graph (i.e., 3-regular
graph) with 8 vertices and three of its subgraphs.

Q G1 G2 G3

Figure 2.5: The cubic graph Q with 8 vertices and three subgraphs G1, G2, and G3.

When analyzing properties of graphs, it is often convenient to consider
subgraphs formed by a specific subset of vertices. These are so-called in-
duced subgraphs, which are constructed by taking a subset V∗ of vertices
and adding each edge from the original graph that connects two vertices
from V∗. Formally, we have:

Definition 2.5: Consider a graph G and a subset V∗ ⊆ V(G). The subgraph
induced by V∗ has vertex set V∗ and edge set E∗ defined by

E∗ def
= {e ∈ E(G)|e = 〈u, v〉 with u, v ∈ V∗}

Likewise, if E∗ ⊆ E(G), the subgraph induced by E∗ has edge set E∗ and a vertex
set V∗ defined by

V∗ def
= {u, v ∈ V(G)|∃e ∈ E∗ : e = 〈u, v〉}

The subgraph induced by V∗ or E∗ is written as G[V∗] or G[E∗], respectively.

Clearly, every simple graph G = (V, E) having n vertices can be seen as
a subgraph of the complete graph Kn. Moreover, if we consider its com-
plement G = (V, E), then the union of G and G, that is, the graph with
vertex set V and edge set E ∪ E, corresponds to Kn. This is what we have
previously coined taking two graphs “together.”

Somewhat related to the notion of an induced subgraph is that of a line
graph.
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Definition 2.6: Consider a simple graph G = (V, E). The line graph of G, denoted
as L(G) is constructed from G by representing each edge e = 〈u, v〉 from E by a
vertex ve in L(G), and joining two vertices ve and ve∗ if and only if edges e and e∗

are incident with the same vertex in G.

To illustrate, consider the graph shown in Figure 2.6(a), containing four ver-
tices and six edges. Its line graph, shown in Figure 2.6(b), consists of six
vertices.

e1 e2

e3

e4

e5e6

e1

e2 e3

e4

e5

e6

(a) (b)

Figure 2.6: (a) A graph G and (b) its line graph L(G).

Note 2.5 (Mathematical language)
Note that we used one of those awkward, yet precise mathematical statements
when defining a subgraph induced by a set of edges. In this case, the mathe-
matical statement

V∗ def
= {u, v ∈ V(G)|∃e ∈ E∗ : e = 〈u, v〉}

should be translated into plain English as follows:

V∗ is the set of vertices from V(G) formed by the end points of edges in
E∗.

If we would literally translate from math, we would have

V∗ is defined by all vertices u and v from V(G) for which there exists an
edge in E∗ that joins u and v.

When reading this second version, it is important to try to move away from all
the math and come up with something like the first one, which is more intuitive
and actually simpler.

A special induced subgraph is the one by which we simply remove a specific
vertex, say v: G[V(G)\{v}]. We came across this type of graph in our proof

30



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

of Theorem 2.2. Instead of using the notation G[V(G)\{v}] we will often
simply write G − v. Likewise, if e is an edge, we will often write G − e in-
stead of G[E(G)\{e}]. Similar simplified notations will be used when deal-
ing with subsets of vertices or edges, respectively.

2.2 Graph representations

It should be clear from the presentation so far that graphs can be drawn in
different ways, but also that when considering their formal definition, they
are merely described in terms of vertices and edges. Let us now pay atten-
tion to how we can conveniently represent graphs. This issue is particularly
important when we need to represent very large graphs for automated pro-
cessing by computers.

Data structures

There are different ways to represent graphs. Perhaps the most appealing
one is to use an adjacency matrix. Consider a graph G with n vertices and
m edges. Its adjacency matrix is nothing else but a table A with n rows and
n columns with entry A[i, j] denoting the number of edges joining vertex vi
and vj. To illustrate, Figure 2.7 shows a simple graph with its accompanying
adjacency matrix.

It is not difficult to see that the following properties hold:

• An adjacency matrix is symmetric, that is for all i, j, A[i, j] = A[j, i]. This
property reflects the fact that an edge is represented as an unordered
pair of vertices e = 〈vi, vj〉 = 〈vj, vi〉.

• A graph G is simple if and only if for all i, j, A[i, j] ≤ 1 and A[i, i] = 0.
In other words, there can be at most one edge joining vertices vi and
vj and, in particular, no edge joining a vertex to itself.

• The sum of values in row i is equal to the degree of vertex vi, that is,
δ(vi) = ∑n

j=1 A[i, j].

As an alternative, we can also use an incidence matrix of a graph as its
representation. An incidence matrix M of graph G consists of n rows and m
columns such that M[i, j] counts the number of times that edge ej is incident
with vertex vi. Note that M[i, j] is either 0, 1, or 2: an edge can be only not
incident with vertex vi, it has vertex vi as exactly one of its end points, or
is a loop joining vertex vi with itself. Figure 2.8 shows the incidence matrix
for the graph from Figure 2.7. Again, the following properties are easy to
verify:
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v1

v2

v3

v4

e1

e2

e3

e4

e5

e6

e7

v1 v2 v3 v4
v1 2 1 1 0
v2 1 0 2 0
v3 1 2 0 1
v4 0 0 1 2

Figure 2.7: A graph with its associated adjacency matrix.

• A graph G has no loops if and only if for all i, j, M[i, j] ≤ 1.

• The sum of all values in row i is equal to the degree of vertex vi. In
mathematical terms, this is expressed as ∀i : δ(vi) = ∑m

j=1 M[i, j].

• Because each edge has exactly two, not necessarily distinct end points,
we know that for all j, ∑n

i=1 M[i, j] = 2.

v1

v2

v3

v4

e1

e2

e3

e4

e5

e6

e7

e1 e2 e3 e4 e5 e6 e7
v1 2 1 1 0 0 0 0
v2 0 1 0 0 1 1 0
v3 0 0 1 1 1 1 0
v4 0 0 0 1 0 0 2

Figure 2.8: A graph with its associated incidence matrix.

One of the problems with using either an adjacency matrix or an inci-
dence matrix is that without further optimizations, the total number of el-
ements for representing a graph is n× n or n×m, respectively. This is not
very efficient when having to deal with very large graphs, especially when
the number of edges is relatively small. To see why this is true, consider the
representation of an adjacency matrix in a computer. Assume that we use
only a single byte to count the number of edges joining a pair of vertices.
Without any further optimizations, a graph with 100,000 vertices would re-
quire a total of 100,000 × 100,000 bytes of storage, that is, close to 10 Gbyte.
Using an incidence matrix and assuming a total of 250,000 edges, a straight-
forward, nonoptimized representation would require close to 25 Gbytes of
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storage. Both representations, even when applying all kinds of storage op-
timizations, generally tend to be rather inefficient.

An often more efficient representation, and used in practice, is that of an
edge list. In this case, we merely list the edges of a graph G by specifying
for each edge which vertices it is incident with. Note that this representa-
tion grows linearly with the number of edges. For example, the edge-list
representation of the graph from Figure 2.8 is:

(〈v1, v1〉, 〈v1, v2〉, 〈v1, v3〉, 〈v2, v3〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v4〉)

In particular, with m edges, we would need to store only 2 · m data items.
Assuming that a vertex can be represented by four bytes, this means that for
our example graph with 100,000 vertices and 250,000 edges, we would need
only close to 2 Mbytes of storage. In practice, this number will be larger
because we need additional data structures to easily navigate through the
edge list. Nevertheless, the total amount of required storage will generally
stay significantly less than what is needed for an adjacency or incidence
matrix.

It should be clear that by simply going through this list, we also find the
vertices of the associated graph, provided that each vertex is incident with
at least one edge. In practice, an edge list is often accompanied by a list of
vertices, for example, to describe attached labels (such as “v1”).

Graph isomorphism

An important observation is that all these representations are independent
of the way that we draw a graph. Consider the graphs shown in Figure 2.9.
No matter whether we represent each graph by its adjacency matrix, inci-
dence matrix, or edge list, if we properly attach labels to vertices and edges,
we will find that their respective representations are exactly the same. As a
consequence, they should also be considered to be the same. This notion of
similarity is formalized through what is known as graph isomorphism.

Definition 2.7: Consider two graphs G = (V, E) and G∗ = (V∗, E∗). G and G∗

are isomorphic if there exists a one-to-one mapping φ : V → V∗ such that for
every edge e ∈ E with e = 〈u, v〉, there is a unique edge e∗ ∈ E∗ with e∗ =
〈φ(u), φ(v)〉.

Stated differently, two graphs G and G∗ are isomorphic if we can uniquely
map the vertices and edges of G to those of G∗ such that if two vertices were
joined in G by a number of edges, their counterparts in G∗ will be joined by
the same number of edges.
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Figure 2.9: Six different drawings of graphs with the same representation, that is,
isomorphic graphs.

Note 2.6 (Mathematical language)
Couldn’t we just talk about the same graphs, you might wonder, instead of using
a term like isomorphism? However, “isomorphism” is a well-defined mathemat-
ical concept that is used for more than just graphs. In essence, it is used in those
situations where we are dealing with sets (like vertices), and that the elements in
those sets are somehow organized in a specific way. Isomorphism is then used
to express that two sets have essentially the same elements when you ignore
labeling issues, but also that their organization is the same. An isomorphism is
then a structure-preserving mapping between two sets.

In many cases, checking whether two graphs are isomorphic is relatively
simple as there are a number of important necessary requirements that need
to be fulfilled. For example, it should be obvious that the two graphs need
to have the same number of vertices and edges in order to be isomorphic. A
stronger requirement is that they have the same ordered degree sequence.
This may same obvious, but if we want to be precise, showing the obvious
may turn out to be more cumbersome than expected. Let’s consider the
following formal formulation.
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Theorem 2.3: If two graphs G and G∗ are isomorphic, then their respective ordered
degree sequences should be the same.

Proof. Let φ be the one-to-one mapping by which G and G∗ are known to
be isomorphic. Consider vertex u from G and its adjacent vertices v1, . . . , vk.
By definition, each edge ei = 〈u, vi〉 incident with u in G is mapped to a
unique edge e∗i = 〈φ(u), φ(vi)〉 in G∗. Because each edge e∗i is incident with
φ(u), we must have that δ(u) ≤ δ(φ(u)).

Now consider a vertex v∗ ∈ V(G∗) that is adjacent to φ(u). By defini-
tion of isomorphism, we know that the edge e∗ = 〈φ(u), v∗〉 must uniquely
map to an edge e = 〈φ−1(φ(u)), φ−1(v∗)〉 in G, where φ−1 denotes the
inverse mapping of φ. Because φ is a one-to-one mapping, we also know
that φ−1(φ(u)) = u, and thus that e = 〈u, φ−1(v∗)〉. In other words, every
edge incident with φ(u) in G∗ will be incident with u in G. This means that
δ(φ(u)) ≤ δ(u).

We conclude that δ(u) = δ(φ(u)) for all vertices of G, implying that the
ordered degree sequences of G and G∗ should be the same.

Unfortunately, this theorem gives us only a necessary condition for two
graphs to be isomorphic, yet it is not a sufficient condition. In other words,
if two graphs have the same ordered degree sequence, then that fact alone
is not sufficient to conclude that they are also isomorphic. Yet to be isomor-
phic, it is necessary for their respective ordered degree sequences to be the
same.

Note 2.7 (Mathematical language)
The difference between necessary and sufficient conditions seems an obvious one,
yet they are surprisingly often confused in mathematical proofs. Formally, in
graph theory, conditions are used to prove properties of graphs. When a con-
dition C is said to be necessary, this means that a property P can hold only if C
is met. When a condition C is said to be sufficient, this means that if C is met,
then property P will hold true. And indeed, when property P is true if and only
if condition C is met, indicates that C is a necessary and sufficient condition for
property P to be valid.

To illustrate, consider the graphs from Figure 2.4(a), which are shown
again in Figure 2.10. Although they have the same ordered degree sequence,
they are not isomorphic. One way of seeing this is that the two vertices with
degree 3 are adjacent to one another in G, but not in G∗. (There are other
structural differences, yet explaining these requires the introduction of more
graph concepts, which we defer until later.)
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G G∗

Figure 2.10: Two nonisomorphic graphs with the same ordered degree sequence.

The bad news is that there are no known easy sufficient conditions that
will tell us in general whether two graphs are isomorphic or not. Essen-
tially, this means that once we have found that all necessary conditions have
been fulfilled, we will have to resort to a trial-and-error method. For exam-
ple, with the graphs from Figure 2.10, we were able to successfully consider
whether the highest-degree vertices were adjacent in both graphs. In other
cases, however, we may have to look at other properties.

Note 2.8 (More information)
In the worst case, we may have to resort to an exhaustive method. Consider a
graph G with n vertices {v1, v2, . . . , vn}, and a graph G∗ also with n vertices. To
check for isomorphism, we need to find a one-to-one mapping between these
two vertex sets. With an exhaustive approach, we simply go through all possi-
ble mappings to see if there is one that establishes isomorphism. Unfortunately,
there may be quite a few mappings that we need to check. To be precise, there
are potentially n! mappings to consider, where

n! def
= n · (n− 1) · (n− 2) · · · 2 · 1

(to be pronounced as n factorial). This is relatively easy to see as follows. For
any mapping, we have n choices for mapping v1 to one of the vertices from G∗.
After that, there are n− 1 possibilities left for mapping v2 to a vertex from G∗,
and then another n− 2 for mapping v3, and so on. Finally, after having made a
choice for each vertex v1, v2, . . . , vn−1, we have only one more option left for vn.

Checking n! mappings is no pleasure game—consider the following table:

n n!
1 1
2 2
3 6
4 24
5 120

n n!
6 720
7 5040
8 40,320
9 362,880

10 3,628,800

n n!
11 39,916,800
12 479,001,600
13 6,227,020,800
14 87,178,291,200
15 1,307,674,368,000
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In fact, for large n, its factorial can be approximated by

n! ≈
√

2πn(
n
e
)n

which reaches amazingly high numbers even for relatively small values of n.
There is also no chance that brute-force computations with a computer are go-
ing to bring any serious help here. For example, if a computer were able to
check whether one specific mapping could establish isomorphism between two
graphs in only 1 nanosecond (which is 10−9 seconds), it would still take about
500 years to go through all possible mappings for two 25-vertex graphs. More
cleverness is needed.

We note that algorithms do exist that can efficiently test isomorphism for
many graphs up to approximately 100 vertices, with perhaps the fastest one
being nauty devised by McKay [1980]. Also, efficient algorithms exist for graphs
for which the maximal vertex degree is known to be bound by a constant [Luks,
1982].

2.3 Connectivity

In all the graphs we have considered so far, each vertex v could be reached
from any other vertex w in the sense that we could indicate a chain of ad-
jacent vertices from v to w. In this section, we will take a closer look at this
important concept of connectivity. We start with some basic terminology:

Definition 2.8: Consider a graph G. A (v0, vk)-walk in G is an alternating
sequence [v0, e1, v1, e2 . . . vk−1, ek, vk] of vertices and edges from G with ei =
〈vi−1, vi〉. In a closed walk, v0 = vk. A trail is a walk in which all edges
are distinct; a path is a trail in which also all vertices are distinct. A cycle is a
closed trail in which all vertices except v0 and vk are distinct.

Using the notion of a path, we define a graph to be connected when there is
a path between each pair of distinct vertices. Formally, we have:

Definition 2.9: Two distinct vertices u and v in graph G are connected if there
exists a (u, v) − path in G. G is connected if all pairs of distinct vertices are
connected.

Clearly, all the graphs we have considered so far are indeed connected.
However, there is no reason to assume that a graph is always connected. If
we take a look at the definition of a graph, there is nothing there that states
that all vertices should be connected. Intuitively, this means that a graph
could also consist as a collection of components, where each component is
a connected subgraph. This can be made precise as follows:
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Definition 2.10: A subgraph H of G is called a component of G if H is connected
and not contained in a connected subgraph of G with more vertices or edges. The
number of components of G is denoted as ω(G).

Note that a component is not just a subgraph: it is a maximal, connected sub-
graph. In other words, if we would consider a subgraph H of a graph G
and would find that there is a vertex not in H that is connected to a vertex
in H, then H is, by definition, not a component. Maximality also incorpo-
rates edges, meaning that if an edge e joins two vertices in G, e should be
contained in H.

The notion of connectivity is important, notably when considering the
robustness of networks. Robustness in this context means how well the net-
work stays connected when we remove vertices or edges. For example, as
we mentioned in Chapter 1, the Internet can be viewed as a (huge) graph in
which routers form the vertices and communication links between routers
the edges. In a formal sense, the Internet is connected. However, if it were
possible to partition the network into multiple components by removing
only a single vertex (i.e., router) or edge (i.e., communication link), we could
hardly claim the Internet to be robust. In fact, it is extremely important for
networks such as the Internet to be able to sustain serious attacks and fail-
ures by which routers and links are brought down, such that connectivity is
still guaranteed.

There are many networks for which robustness in one way or another
plays an important role. Let us now formalize this notion by considering
what are known as vertex and edge cuts.

Definition 2.11: For a graph G let V∗ ⊂ V(G) and E∗ ⊂ E(G). V∗ is called a
vertex cut if ω(G − V∗) > ω(G). If V∗ consists of a single vertex v, then v is
called a cut vertex. Likewise, if ω(G − E∗) > ω(G) then E∗ is called an edge
cut. If E∗ consists of only a single edge e, then e is known as a cut edge.

Note that we have used the notation G − V∗ to indicate the induced sub-
graph G[V(G)\V∗]. What the definition states is that V∗ is a vertex cut of a
connected graph if the removal of vertices in V∗ from G will make G disinte-
grate into several components. In other words, G will become disconnected.
Analogously, an edge cut of G is a collection of edges that will make G fall
apart into multiple components when those edges are removed. In the def-
inition given above, we have used the simpler notation G − E∗ to indicate
the induced subgraph G[E(G)\E∗].

Of particular interest is the minimal vertex cut for a connected graph. In
other words, how many vertices do we need to remove from a connected
graph before it becomes disconnected? An important observation is the fol-
lowing. Let κ(G) denote the size of a minimal vertex cut for graph G, and
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likewise, λ(G) the size of a minimal edge cut. As it turns out, κ(G) ≤ λ(G),
but also that λ(G) is less or equal to the minimal vertex degree. Using the
notation min S to denote the smallest value found among the elements in
set S, these properties are formulated in the following important theorem.

Theorem 2.4: κ(G) ≤ λ(G) ≤ min{δ(v)|v ∈ V(G)}

Proof. That λ(G) ≤ min{δ(v)|v ∈ V(G)} is easy to see. Consider a vertex
u with minimal degree, that is, δ(u) = min{δ(v)|v ∈ V(G)}. If we simply
remove the δ(u) edges incident with u, then u will become isolated, and
certainly the resulting graph will have at least one more component than it
had before (namely the one consisting only of u).

To prove that κ(G) ≤ λ(G), consider a graph G with λ(G) = k and let
E∗ = {e1, e2, . . . , ek} be a minimal edge cut of G, with ei = 〈ui, vi〉. Let U
denote the set of vertices {u1, . . . , uk} and V the set {v1, . . . , vk}. Note that
in this case, the vertices in either set need not be distinct. The graph G− E∗

will fall apart into exactly two components, say G1 and G2 (we leave it to
you to show that this is indeed true). If G1 contains a vertex u distinct from
any ui, as shown in Figure 2.11(a), then clearly removing all vertices in U
will disconnect u from any vertex in G2, so that κ(G) ≤ k.

If there is no such vertex u, then assume that V(G1) = U. Consider
vertex u1. We know that u1 is adjacent to d1 vertices from G1, and each of
these neighbors in G1 is adjacent to a vertex from V. Let E∗1 be a set of edges
from E∗ joining vertices from the d1 neighbors of u1 and exactly one vertex
from V. Likewise, let E∗2 be the d2 edges from E∗ incident with u1. This
situation is shown in Figure 2.11(b). Obviously, d1 + d2 = |E∗1 ∪ E∗2 | ≤ |E∗|.
Also, the d1 + d2 neighboring vertices of u1 form a vertex cut, shown as open
circles in Figure 2.11(b). This also means that κ(G) ≤ d1 + d2 ≤ |E∗| = λ(G),
completing the proof.

A graph G for which κ(G) ≥ k for some k is said to be k-connected. Like-
wise, graph G is k-edge-connected if λ(G) ≥ k. Finally, a graph for which
κ(G) = λ(G) = min{δ(v)|v ∈ V(G)} is said to be optimally connected.

Note 2.9 (Study tip)
The previous proof, and notably proving that κ(G) ≤ λ(G), is a typical example
where graph theory requires insight. The proof is not obvious, and it can cer-
tainly not be expected that an undergraduate student would be able to devise it
from scratch. What is important, however, is that the proof itself is understood
well. To this end, you are encouraged to start with reproducing proofs, as this
will enforce you to carefully think about every step that is taken. Simply being
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Figure 2.11: The two scenarios for the proof of Theorem 2.4.

able to reproduce proofs is a well-known technique to successfully study graph
theory.

What Theorem 2.4 tells us is that every graph is at most δmin-edge con-
nected, and at most δmin-connected, where δmin = min{δ(v)|v ∈ V(G)}. We
showed this for edge connectivity. Vertex connectivity is also easy to see:
simply remove the δmin vertices adjacent to a vertex of degree δmin and the
latter becomes disconnected. Of course, finding a lower bound for k is more
interesting, but this turns out to be a relatively difficult problem to solve.
Without going into the rather intricate details, we can say something about
a lower bound for k by considering the notion of path independence.

Definition 2.12: Consider a graph G and a collection P of (u, v)-paths in G, with
u, v ∈ V(G). P is vertex independent if for all (u, v)-paths P1, P2 ∈ P we have
that V(P1) ∩ V(P2) = {u, v}. The collection is edge independent if for all its
(u, v)-paths P1 and P2, we have that E(P1) ∩ E(P2) = ∅.

In other words, two (u, v)-paths P1 and P2 are vertex independent if they
share only the vertices u and v, and are edge independent if they have no
edge in common. Using path independence, we now come to one of the
more fundamental theorems in graph theory, formulated by the Austrian
mathematician Karl Menger.

Theorem 2.5 (Menger): Let G be a connected graph and u and v two nonadjacent
vertices in G. The minimum number of vertices in a vertex cut that disconnects
u and v is equal to the maximum number of pairwise vertex-independent paths
between u to v. Analogously, the minimum number of edges in an edge cut that
disconnects u and v, is equal to the maximum number of pairwise edge-independent
paths between u and v.
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We omit the proof, and instead refer the interested reader to Bondy and
Murty [2008], Diestel [2005], or West [2001].

Note 2.10 (Mathematical language)
Menger’s theorem should be read carefully: it mentions pairwise independent
paths. In this case, the adjective pairwise is used to make clear that we should
always consider pairs of paths when considering independence. And indeed,
this makes sense when you would consider trying to count the number of inde-
pendent paths: being an independent path can only be relative to another path.

To complete the story, also note that the theorem is all about counting the
number of (u, v)-paths, and not the number of pairs of such paths. In other
words, pairwise is an adjective to independent, and not to paths.

It is not difficult to see that Menger’s theorem leads to the following
corollary:

Corollary 2.2: A graph G is k-connected if and only if any two distinct vertices are
connected by at least k pairwise vertex-independent paths. G is k-edge connected
if and only if any two distinct vertices are connected by at least k pairwise edge-
independent paths.

Of particular interest is the following one:

Corollary 2.3: Each edge of a 2-edge-connected graph lies on a cycle.

This corollary actually follows from the previous one, which states (for the
special case k = 2) that a graph is 2-edge-connected if and only if any
two distinct vertices are connected by at least 2 pairwise edge-independent
paths. The latter, of course, together form a cycle. We will use this corollary
in the next chapter when discussing so-called directed graphs.

Intuitively, it should be clear that for any simple graph G a higher value
of κ(G), i.e., the size of a minimal vertex cut, implies that more edges are
needed. We have just seen that in every k-connected graph each vertex will
have at least k incident edges. Knowing that ∑ δ(v) = 2 · m, this means
that for a graph with n vertices, we would need 1

2 ∑ δ(v) and thus at least
1
2 ∑ k = 1

2 n · k edges. But what is the minimal number of edges for a graph
to be k-connected? This question brings us to a so-called Harary graph:

Definition 2.13: A Harary graph Hk,n is a k-connected simple graph with n ver-
tices and with a minimal number of edges.

What we now need to figure out is actually how many edges an Harary
graph has. We will show that Hk,n has exactly dk · n/2e edges, that is, the
smallest natural number of edges greater or equal to k · n/2. To this end, we
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label the vertices in Hk,n as {0, 1, . . . , n− 1} and organize them graphically
as a circle. Following Bondy and Murty [1976], we consider the following
three cases for combinations of k and n.

k is even: We construct Hk,n by joining each vertex i to its k/2 closest left-
hand (i.e., clockwise) neighbors and its k/2 closest right-hand (i.e.,
counterclockwise) neighbors1.

k is odd, n is even: In this case, we construct Hk−1,n and add n/2 edges
by joining vertex i to its left-hand neighbor at distance n

2 (with 0 ≤
i < n

2 ). In other words, we add edges 〈0, n
2 〉, 〈1, 1 + n

2 〉, 〈2, 2 + n
2 〉, . . .,

〈 n−2
2 , n− 1〉.

k is odd, n is odd: In this case, we again first construct Hk−1,n and then add
the (n + 1)/2 edges 〈0, n−1

2 〉, 〈1, 1 + n−1
2 〉, . . . , 〈 n−1

2 , n− 1〉.

To clarify the construction of these graphs, Figure 2.12 shows graphs H4,8,
H5,8, and the construction of H5,9 from H4,9.

Note 2.11 (More information)
At first sight, constructing Harary graphs seems to be one of those typical math-
ematical topics: nice, but it looks as if someone got carried away a bit. In
fact, Harary graphs address a very relevant question in communication net-
works: trading off the costs between reliability and the number of communica-
tion links. A communication network constructed as an Harary graph Hk,n tells
us that we can remove up to k vertices before the network becomes partitioned.
This means that if we are considering networks that are designed to dissemi-
nate data to every node, Harary graphs will give us the means to make them
just as robust as we want them to be, yet with a minimal number of links. There
are a number of variations on this theme, as explained by McQuillan [1977].

Admittedly, when first thought of, people considered the monetary costs of
a communication link. With the robustness of the Internet, the problem seems to
be less relevant. However, suppose we formulate costs in terms of how quickly
data is disseminated. As we shall discuss in Chapter 8, we often want to con-
struct an artificial, or virtual network on top of an existing communication net-
work such as the Internet. In that case, we can shape the network as we like.
As discussed by Jenkins and Demers [2001], Harary graphs are useful for con-
structing virtual networks that will optimally disseminate data in a group of
nodes, while keeping that group k-connected.

Now that we have the procedure to construct Harary graphs, we need to
show that they indeed have a minimal number of edges while maintaining
the property of being k-connected. We first prove connectivity.

1Of course, being a left-hand or right-hand neighbor makes sense only if we assume that a
vertex has an orientation. In our example, we orient a vertex toward the middle of the ring.
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Figure 2.12: Various Harary graphs: (a) H4,8, (b) H5,8, (c) H4,9, and (d) H5,9. Dashed
edges are the ones added to obtain H5,8 from H4,8, and H5,9 from H4,9, respectively.

Theorem 2.6: The Harary graph Hk,n is k-connected.

Proof. Let us first consider the case that k is even. Our proof is completed if
we can show that there is no vertex cut with fewer than k vertices. To this
end, let us assume that such a set W does exist. If we can then prove that this
assumption can never hold, we will have completed our proof (we come
back to this method of proving a theorem below).

To this end, let vertices i and j belong to different components of Hk,n −
W (i.e., G[V(Hk,n)\W]). Consider the set Ni→j of left-hand neighbors of
i, including i: {i, i + 1, . . . , j − 1, j}, and likewise its right-hand neighbors
Ni←j = {j, j + 1, . . . , i − 1, i}. In both cases, addition is taken modulo n.

Let Wi→j
def
= W ∩ Ni→j and Wi←j

def
= W ∩ Ni←j (meaning that W = Wi→j ∪

Wi←j). We know that |W| < k, so we must have that either |Wi→j| < k/2 or
|Wi←j| < k/2, as is illustrated in Figure 2.13. Assume that |Wi→j| < k/2

Now consider an arbitrary vertex u in Hk,n −W, lying on, say, segment
S1 (see Figure 2.13). We know that u is adjacent to k/2 consecutive vertices
in either direction. As a consequence, removing less than k/2 vertices as is
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done through Wi→j will still allow us to reach any vertex v on segment S2. In
other words, Hk,n−W will remain connected, contradicting our assumption
that W was a vertex cut.

i

j

N

i j

→N

W

i j→

S1

S2

Figure 2.13: Illustration that |W ∩ Ni→j| < k/2 or |W ∩ Ni←j| < k/2.

Note 2.12 (Proof techniques)
We have just encountered our first proof by contradiction. This method is
widely applied and you should definitely familiarize yourself with it. The prin-
ciple is fairly straightforward: if you want to prove some statement P to be
true, then in a proof by contradiction you assume that P cannot hold and sub-
sequently show that this assumption will lead to something nonsensical. Non-
sense can then only mean that your assumption was incorrect.

There is another important principle that surfaced in the previous proof,
which is known as the pigeonhole principle. This principle simply states that
if n items need to be spread over m < n boxes, then there will be at least one
box containing more than one item. How did we apply this principle? In our
proof, we noted that the set W contained less than k elements and that we split
it into two parts Wi→j and Wi←j. The pigeonhole principle tells us that at least
one of these two sets much have less than k/2 elements.

What remains is to show that a Harary graph also has a minimal num-
ber of edges. For any k-connected graph, we now know that each vertex
v has a degree δ(v) ≥ k. Let mk(n) denote the minimal number of edges
for any simple, k-connected graph G. Because |E(G)| = 1

2 ∑v∈V(G) δ(v) ≥
1
2 ∑v∈V(G) δmin ≥ n·k

2 , we know that mk(n) ≥ n·k
2 . It is not difficult to verify

that |E(Hk,n)| = nk
2 , meaning that an Harary graph indeed has a minimal

number of edges.
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2.4 Drawing graphs

As the saying goes, a picture does often say more than a 1000 words. This
certainly also holds for drawing graphs. We have already seen various ex-
amples of how the same graph can be drawn in different ways. As it turns
out, this subject is so important that researchers have spent considerable ef-
fort on devising algorithms for drawing graphs. In this section we take a
closer look at some of the results.

Graph embeddings

To illustrate why properly drawing graphs may be important, consider the
graphs from Figure 2.14, which shows the Petersen graph, a particular 3-
regular graph. Clearly, by just looking at these drawings, it is not obvious
that we are dealing with the same graph (i.e., same in the sense of isomor-
phic). This instantly brings up the issue of what makes a good drawing of a
graph. In this example, either Figure 2.14(a) or (b) is arguably the best one.

Formally, when drawing graphs we are considering so-called graph em-
beddings: a representation of a graph on a surface where vertices are as-
sociated with points on that surface. In practice, we always consider the
two-dimensional plane, but note that embeddings in three dimensions are
also possible.

(a) (b) (c)

Figure 2.14: Three different drawings of the Petersen graph.

A commonly applied embedding is the circular embedding. In this case,
the vertices are placed at evenly spaced points on a circle, as illustrated by
the Petersen graph in Figure 2.14(c). The advantage of this representation is
that no three vertices ever lie on the same straight line, or, in other words,
are ever collinear. This has the effect that each edge can be easily drawn such
that it remains visible in the drawing. This is an important property, notably
when dealing with so-called random graphs in which pairs of vertices are
connected by randomly chosen edges. In that case, it is generally important
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Figure 2.15: A random graph with 50 vertices and 103 edges. The circular embed-
ding allows to draw each edge as a straight line that remains (reasonably) visible.

to see all edges. Figure 2.15 shows such a random graph with 50 vertices
and 103 edges.

There are other useful embeddings to consider. For example, an impor-
tant class is formed by bipartite graphs: graphs of which the set of vertices
can be partitioned into two subsets such that no edge is incident to vertices
from the same subset. In other words, each edge is incident to a vertex from
either set:

Definition 2.14: A graph G is bipartite if V(G) can be partitioned into two disjoint
subsets V1 and V2 such each edge e ∈ E(G) has one end point in V1 and the other
in V2: E(G) ⊆ {e = 〈u1, u2〉|u1 ∈ V1, u2 ∈ V2}.

Bipartite graphs are sometimes conveniently drawn as ranked embed-
dings. To explain, reconsider the graph from Figure 2.15. Although it is
not obvious from the drawing at all, it turns out that this graph is actually
bipartite. We can discover this by considering what the distance is between
a given vertex v and each other vertex. The distance between two vertices
v and w is informally expressed as the minimal number of edges between
v and w (also called the shortest path to which we return in Chapter 4).
This leads to a group of vertices at distance 1 (i.e., vertices adjacent to v,
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Figure 2.16: A ranked embedding of the graph from Figure 2.15.

which we had defined as its neighbors), at distance 2 (vertices adjacent to
the vertices adjacent to v), etc. Now consider Figure 2.16 for which we have
selected an arbitrary vertex v from G and subsequently (1) ranked all other
vertices according to their distance, and (2) placed all vertices at the same
distance along the same vertical line. What we observe is that there are no
edges between vertices at the same distance. This can only mean that G is
bipartite. In fact, in this example the set of vertices can be partitioned into
six disjoint subsets.

These examples illustrate that examining graphs through visual inspec-
tion requires the use of computer tools. What these tools invariably do is
compute vertex positions in the two-dimensional plane according to some
simple or complex criterion. Circular and ranked embeddings are relatively
simple. More complex ones involve spreading vertices far apart while still
keeping connected ones close to each other. An example of such an ap-
proach is a spring embedding [Eades, 1984]. In this case, the vertices are
modeled as rings connected by springs. Initially, the vertices are positioned
randomly in the two-dimensional plane, after which the springs do their
work by trying to reach an equilibrium. To illustrate, Figure 2.17 shows a
number of steps by which the randomly positioned vertices in Figure 2.17(a)
are gradually brought into an equilibrium.
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Figure 2.17: The evolution of applying a spring embedding to a graph.

Note 2.13 (More information)
As illustrated by Figure 2.17, spring embeddings can lead to an appealing vi-
sualization of a graph. Let’s take a closer look at how the approach works. As
stated previously, Eades [1984] proposed to represent each vertex as a ring and
each edge as a spring. Each vertex u is initially positioned in a two-dimensional
plane, with coordinates (ux, uy). Each spring e = 〈u, v〉 exerts an attracting
force Fatt(u, v) between the vertices u and v it joins according to the formula

Fatt(u, v) def
=

{
2 log

(
d(u, v)

)
if u and v are adjacent

0 otherwise

where d(u, v) is the length of the spring between u and v. This length corre-
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sponds to the distance between u and v defined as:

d(u, v) def
=

√
(ux − vx)2 + (uy − vy)2

Note that there is nothing special to this definition of distance: it is a direct
application of the Pythagorean theorem. Besides an attracting force, Eades also
introduces a repelling force Frep(u, v) between nonadajacent vertices u and v,
defined as:

Frep(u, v) def
=

{
0 if u and v are adjacent

1/
√

d(u, v) otherwise

With these forces defined, we now have a system of attracting and repelling
vertices. When the vertices are placed randomly, it should be clear that there
will generally be a lot of pushing and pulling going on. In particular, if the
resulting pushing and pulling forces on a vertex are not equal, we can expect
the vertex to be moving to a position in which there is more equilibrium. This
behavior can be simulated by means of the following algorithm:

Algorithm 2.1 (Spring embedding):

1. Place the vertices at random locations
2. For each vertex u, calculate the resulting forces in the x and y direction, respec-

tively:
Fx(u) def

= ∑v 6=u
(

Fatt,x(u, v)− Frep,x(u, v)
)

Fy(u) def
= ∑v 6=u

(
Fatt,y(u, v)− Frep,y(u, v)

)
3. Reposition vertex u according to:

ux ← ux + 0.1 · Fx(u) and uy ← uy + 0.1 · Fy(u)

4. Goto to Step 2. Stop after M iterations.

Fatt,x(u, v) is the attracting force in the x direction from neighboring vertex v,
computed as:

Fatt,x(u, v) def
= Fatt(u, v) · |vx − ux|

d(u, v)

The respective definition of Fatt,y(u, v), Frep,x(u, v), and Frep,y(u, v) is analogous.
Furthermore, we have used the notation “x ← S” to denote that x takes

on the value resulting from evaluating expression S. So, in our example, ux
is adjusted by 0.1 · Fx(u) units. In practice, a state very close to equilibrium is
reached for at most M = 100 iterations.
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Figure 2.18: A plane graph with 12 regions.

Planar graphs

Let us now take a look at an important class of graphs where topology plays
a role, namely graphs that can be drawn in such a way that no edges cross
each other, so-called planar graphs.

Definition 2.15: A plane graph is a specific embedding of a graph G such that no
two edges intersect. If such an embedding exists, G is said to be planar.

It is not difficult to see why planarity can play an important role. Con-
sider, for example, designing a transportation network. If the correspond-
ing graph is planar, this means that there is no need for multi-layer cross-
ings such as bridges and tunnels. As another example, consider the design
of electrical circuits, such as those for chips. In this case, it is important
that the wires that connect components do not cross each other. Unfor-
tunately, designing modern chips under the constraint that the associated
graph must be planar is very difficult, if not impossible. The alternative,
is to design chips as a collection of layers, each layer having an associated
planar graph. We will later discuss another intriguing application of planar
graphs, namely the coloring of maps. Before doing so, we first consider a
number of characteristic properties of planar graphs.

When considering a plane graph, we will observe a number of regions
(also called faces), which are enclosed by the edges of the graph. For exam-
ple, Figure 2.18 shows a graph with 12 regions. Each region, except r1, is
enclosed by a cycle. Region r1 is referred to as an exterior region; the others
are interior regions.

A useful property of planar graphs was formulated by the famous ver-
satile Swiss mathematician Leonhard Euler (1707-1783), who is generally
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considered as one of the greatest mathematicians ever.

Theorem 2.7 (Euler’s formula): For a plane graph G with n vertices, m edges, and r
regions, we have that n−m + r = 2.

To prove this theorem, we need to consider an important property of an
acyclic graph, that is, a graph containing no cycles, also known as a tree.
Formally, we have:

Definition 2.16: A simple, connected graph having no cycles is called a tree. A
simple graph having only trees as its components, is called a forest.

Lemma 2.1: Any tree T with n vertices has |E(T)| = n− 1 edges.

Proof. We prove this lemma by induction on the number of vertices. Clearly,
when n = 1 there can be no edges and the lemma is seen to hold. Now
assume the lemma holds for all trees with less than n vertices. Let H be a
tree with n ≥ 2 vertices, and edge 〈u, v〉 ∈ E(H). If we remove this edge,
then the result will be two separate subgraphs G1 and G2, for otherwise
〈u, v〉 was part of a cycle. Both subgraphs are acyclic, each with less than n
vertices, so that |E(G1)| = |V(G1)| − 1 and |E(G2)| = |V(G2)| − 1. Because
we have not removed any vertices, we know that

|E(H)| = |E(G1)|+ |E(G2)|+ 1 = |V(G1)| − 1 + |V(G2)| − 1 + 1 = n− 1

which completes the proof.

Note 2.14 (Proof techniques)
This is the first time we have encountered a proof by induction. This type of
proof consists of two parts. First, a situation is shown to hold for some initial
value n (in our example, the number of vertices for which we first consider one
vertex). Then, assuming the situation is valid for k > 1, we prove that it also
holds for k + 1. In doing so, we have then completed the proof.

Proof by induction is extremely important and you should make sure that
you not only understand it well, but also that you are proficient in applying
it. d’Angelo and West [2000] devote a complete chapter to the principle of in-
duction and provide many examples of its use. Formally, induction is defined
by considering the natural numbers, that is, N def

= {1, 2, . . .}. We then have the
following important theorem.

Theorem 2.8 (Principle of induction): Let S(n) be a mathematical statement formu-
lated in terms a natural number n. S(n) is true if the following two statements are
true:
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1. S(1) is true
2. for any k ∈N, if S(k) is true, then S(k + 1) is true

What this theorem tells us, is that to conduct a proof by induction, we need to
first show that S(1) holds. Secondly, we need to show that if S(k) is true, then
S(k + 1) is also true. We can then conclude that S(n) is true for any n ∈ N.
In practice this means that we show S(1) to be true, then assume that S(k) is
true for k > 1, after which we need to show that S(k + 1) is true based on that
assumption.

Of course, showing that S(k + 1) is true is often the nasty part. A common
approach is to try to reduce the situation for k + 1 to S(k). This is exactly what
happened in the case of our lemma: we simply removed an edge which lead to
subgraphs of smaller size for which we knew that our statement n = m + 1 was
true. From there on, we could subsequently count the number of vertices and
edges in the original graph.

Using this lemma, we can now complete our proof of Euler’s formula,
again by means of induction:

Proof of Theorem 2.7. The proof is by induction on r, the number of regions.
If r = 1, then there is only a single region, which means there cannot be a
region enclosed by edges of G. In other words, G must be acyclic, in which
case m = n− 1 and thus n− m + r = n− (n− 1) + 1 = 2. For r = 1 the
formula is therefore seen to be true.

Now assume the formula is true for all plane graphs with less than r
regions, and let G be a plane graph with r > 1 regions. Choose an edge e
(which is not a cut edge) and consider the subgraph G∗ = G− e. As e was
part of a cycle, we will have merged two regions, reducing the total number
of regions by 1. In that case, we know that Euler’s formula is true, and as a
consequence, |V(G∗)| − |E(G∗)|+ (r− 1) = 2. Considering that |V(G∗)| =
|V(G)| and |E(G∗)| = |E(G)| − 1, we now obtain |V(G)| − (|E(G)| − 1) +
r− 1 = |V(G)| − |E(G)|+ r = 2, completing our proof.

Euler’s formula is important as it allows us to derive a number of proper-
ties by which we can more easily determine whether a given graph is planar
or not. To this end, we first prove the following:

Theorem 2.9: For any connected simple planar graph G with n ≥ 3 vertices and m
edges, we have that m ≤ 3n− 6

Proof. Consider a region f in any plane graph of G. For any interior region,
let B( f ) denote the number of edges by which f is enclosed, i.e., the length
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of its “border.” Obviously, B( f ) ≥ 3 for any interior region. However, with
n ≥ 3 we also have that the exterior region is “bounded” by at least 3 edges.
Therefore, if there are a total of r regions, then clearly ∑ B( f ) ≥ 3r. On the
other hand, it is not difficult to see that ∑ B( f ) counts every edge in G once
or twice, and hence ∑ B( f ) ≤ 2m, so that we obtain 3r ≤ ∑ B( f ) ≤ 2m,
and thus r ≤ 2

3 m. From Theorem 2.7 we then derive that m = n + r − 2 ≤
n + 2

3 m− 2, so that m ≤ 3n− 6.

Note that this theorem gives us a necessary condition for a simple graph to
be planar. In other words, if we have a simple graph G for which m >
3n − 6, then G cannot be planar. It is not a sufficient condition, as we will
show shortly. Furthermore, what we learn from this theorem is that a planar
graph will have relatively few edges, which is intuitively clear. We can use
it to prove that the complete graph on 5 vertices, that is, K5 cannot be planar.

Corollary 2.4: The complete graph on 5 vertices, K5 is nonplanar.

Proof. With n = |V(K5)| = 5 and m = |E(K5)| = (5
2) = 10, we have that

m 6≤ 3n− 6, so that K5 cannot be planar.

Note 2.15 (More information)
There are two novelties in this proof. First, we introduced the notation (n

k),
which is pronounced as “n choose k,” and is defined as(

n
k

)
def
=

n!
(n−k)!·k!

Second, we are stating that the number of edges in Kn is equal to (n
2). Consid-

ering that we have n vertices in Kn, it should be clear that to construct Kn, we
need to consider exactly all pairs of vertices. Obviously, there are exactly (n

2) of
such pairs. Another way of counting the number of edges in Kn is as follows.
Assume that the vertices are labeled {1, 2, . . . , n}. For vertex 1, we can choose
from n− 1 vertices to join it to. After that, there are only n− 2 vertices to join to
vertex 2 (because vertex 1 is already joined with vertex 2). For vertex 3, we can
choose from n− 3 vertices, and so. In other words, the total number of edges in
Kn is equal to:

|E(Kn)| = (n− 1) + (n− 2) + (n− 3) + ·+ 2 + 1 =
1
2

n(n− 1)

To show that ∑n−1
i=1 i = 1

2 n(n− 1) is left as an exercise.

Analogous to a complete graph, we also have complete bipartite graphs
Kp,q, which is a simple graph consisting of the two disjoint set of vertices V1
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and V2 as in Definition 2.14 on page 46, with p = |V1| and q = |V2|, and a
total of p · q edges. An observation is now the following:

Theorem 2.10: The complete bipartite graph K3,3 is nonplanar.

Proof. Because n = |V(K3,3)| = 6 and m = |E(K3,3)| = 9, we find that
m ≤ 3n− 6, so that this will not give us evidence that K3,3 is indeed nonpla-
nar. Instead, we need to follow a similar reasoning as for the proof of The-
orem 2.9. First, note that each interior region f in any Kp,q will necessarily
be enclosed by an even number of edges. Again, if B( f ) denotes the num-
ber of edges enclosing interior region f , and realizing that also the exterior
region will be “bounded” by at least four edges, we find that ∑ B( f ) ≥ 4r,
where r is the total number of regions. Because edges are counted twice,
we should have that 4r ≤ 2m = 18. However, Euler’s formula tells us that
r = 2− n + m = 2− 6 + 9 = 5, so that 4r 6≤ 18. Therefore, K3,3 cannot be
planar.

Note 2.16 (Mathematical language)
Indeed, as we stated above, the mere fact that m ≤ 3n − 6 is not enough to
conclude that a graph is planar. In other words, it is not a sufficient condition.

With these two results, we can now conclude that:

Corollary 2.5: Any connected, simple graph having a subgraph isomorphic to either
K5 or K3,3 cannot be planar.
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In the previous chapter we have looked only at the very basics of graphs,
although it should be clear that those foundations already provide a pow-
erful tool for modeling and analyzing real-world networks. In this chapter
we consider a number of important extensions. We start with introducing
graphs in which the edges are directed, that is, pointing from one vertex to
another. Besides adding a direction to an edge, we can also associate a weight
with an edge, which often represents some kind of cost or distance. Finally,
we take a look at a specific application of graphs by which the vertices or
edges are colored. As we shall see, colorings allow us to capture real-world
situations.

3.1 Directed graphs

In the graphs we have considered so far, two vertices could be connected
by one or more edges. An edge was represented by an unordered pair of
vertices, such as 〈u, v〉 in the case of simple graphs. However, having no
ordering is not always convenient. Consider the following examples:

• Suppose we want to model a street plan as a network. This is nat-
urally done by representing a junction as a vertex and a street as an
edge connecting two junctions. However, we need a notion of edge
direction if we want to represent one-way streets.

• In social relations it is often convenient to represent the fact that Alice
knows Bob, but that the opposite is not the case. In a social network
this is done by representing people by vertices, and the “who knows
whom” relation by means of directed edge.

• In computer networks, and notably wireless networks, links between
two different nodes are often not symmetric in the sense that mes-
sages can generally be successfully sent from station A to B, but not
the other way around. Modeling such a computer network is more
conveniently done using directed edges.

What we are thus seeking is a way to extend graphs that we will be able to
model these and similar situations.

Basics of directed graphs

The need for associating a direction with the edges of a graph leads to the
notion of a directed graph, or simply digraph:

Definition 3.1: A directed graph or digraph D consists of a collection vertices V,
and a collection of arcs A, for which we write D = (V, A). Each arc a = 〈−→u, v〉 is
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said to join vertex u ∈ V to another (not necessarily distinct) vertex v. Vertex u is
called the tail of a, whereas v is its head.

The underlying graph G(D) of a digraph D is obtained by replacing each
arc a = 〈−→u, v〉 with its undirected counterpart. As we shall see in later chap-
ters, analyzing the underlying graph is often more convenient than directly
considering the original digraph. Conversely, we can transform any undi-
rected graph G into a directed one, D(G), by associating a direction with
each edge. Such a digraph is also known as an orientation. We leave it as
an exercise to prove that for a simple graph G with m edges that there are
2m different orientations possible.

As with undirected graphs, neighbor sets play an important role in di-
rected graphs. We make a distinction between two types of neighbors:

Definition 3.2: Consider a directed graph D and vertex v ∈ V(D). The in-
neighbor set Nin(v) of v consists of the adjacent vertices having an arc with v
as its head. Likewise, the out-neighbor set Nout(v) consists of the adjacent ver-
tices having an arc with v as its tail. Formally we have:

Nin(v) def
= {w ∈ V(D)|v 6= w, ∃a = 〈−→w, v〉 : a ∈ A(D)}

Nout(v) def
= {w ∈ V(D)|v 6= w, ∃a = 〈−→v, w〉 : a ∈ A(D)}

The set of neighbors N(v) of vertex v is simply the union of its in-neighbors and
out-neighbors, i.e., N(v) def

= Nin(v) ∪ Nout(v).

Note 3.1 (Mathematical language)
Notice that the formal part of this definition is almost identical to that of the
neighbor set in the case of undirected graphs. And again, it is precise, yet can
seem somewhat intimidating at first sight. Informally, the in-neighbor set con-
sists of adjacent vertices from which v can be directly reached: they are neigh-
bors “pointing” to v. The out-neighbor set consists of vertices to which v is
“pointing.” These type of informal translations of mathematical definitions are
important to make, and as before, you are encouraged to practice in formulating
them.

A digraph is said to be strict if it has no loops and no two arcs with the
same end points have the same orientation. Note that the notion of a strict
digraph is analogous to that of a simple undirected graph. Many concepts
that we defined for undirected graphs have their counterparts in digraphs.
Let us start with that of vertex degree.

Definition 3.3: For a vertex v of digraph D, the number of arcs with head v is called
the indegree δin(v) of v. Likewise, the outdegree δout(v) is the number of arcs
having v as their tail.
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The concept of indegree and outdegree can sometimes play a surprisingly
important role when devising or analyzing real-world networks. To give an
example, suppose we are devising a communication network in which we
model the case that node u can send a message directly to node v by means
of an arc a = 〈−→u, v〉. The indegree of node v may then indicate how many
messages v can expect per time unit, also known as the rate of incoming
messages. In many cases, it is desirable that this rate is limited in order to
ensure that nodes are not overloaded.

In general, considering vertex degree distributions is an important tech-
nique for analyzing networks. A degree distribution shows how many ver-
tices have degree 0, 1, 2, . . ., and so on. In many practical cases, we are often
more interested in finding the distribution of the indegrees. For example,
in the case of social networks, nodes with a high indegree are often consid-
ered to be important. By computing the ratio of indegrees between different
nodes, we can get an impression of exactly how more important certain
nodes are. We will return to vertex degree distributions extensively in later
chapters.

Returning to graph-theoretical issues, it is not difficult to see that the
following analogy to undirected graphs holds:

Theorem 3.1: For any directed graph D the sum of indegrees as well as the sum of
outdegrees is equal to the total number of arcs:

∑
v∈V(D)

δin(v) = ∑
v∈V(D)

δout(v) = |A(D)|.

Proof. Clearly, every arc in D has exactly one head and one tail. The sum of
the indegrees is the same as counting all arc heads, and likewise, the sum of
all outdegrees is the same as counting all tails, both being equal to the total
number of arcs.

A natural representation of directed graphs is by means of an adjacency
matrix A in which A[i, j] is equal to the number of arcs joining vertex vi to
vj. In contrast to an adjacency matrix for an undirected graph, we have the
following properties in case of a directed graph:

• A digraph D is strict if and only if for all i and j, A[i, j] ≤ 1 and A[i, i] =
0. In other words, there can be at most one arc joining any vertex vi to
another vertex vj, and no arcs joining a vertex to itself.

• For each vertex vi, ∑j A[i, j] = δout(vi) and ∑j A[j, i] = δin(vi). In other
words, the sum of the entries in row i corresponds to the outdegree of
vertex vi, whereas the sum of the entries in column i equals the inde-
gree of vi.

59



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Note that in contrast to undirected graphs, the adjacency matrix for a di-
rected graph is not necessarily symmetric, that is, in general, A[i, j] 6= A[j, i].
Rephrasing this in natural language means that when there is an arc joining
vertex vi to vj, then there need not necessarily also be an arc joining vj to vi.
Taking the same graph from Figure 2.7 but now with a specific orientation,
Figure 3.1 shows an example of a digraph and its adjacency matrix.

a1

v1

v2

a2

a3

a4

a5
a6

v3

v4

a7

v1 v2 v3 v4 ∑
v1 1 1 0 0 2
v2 0 0 1 0 1
v3 1 1 0 0 2
v4 0 0 1 1 2
∑ 2 2 2 1 7

Figure 3.1: A digraph with its associated adjacency matrix.

Similarly, we can represent a digraph by means of an incidence matrix
M. In this case, M[i, j] represents whether or not vertex vi is incident to arc
aj. In particular:

M[i, j] =


1 if vertex vi is the tail of arc aj

−1 if vertex vi is the head of arc aj

0 otherwise

Unfortunately, if a digraph has loops (i.e., arcs of the form 〈−→u, u〉 that join
a vertex to itself), this representation will not work, as is also illustrated in
Figure 3.2. Partly also for this reason, it is more common to use adjacency
matrices or simply listing the arcs analogous to edge-list representations in
the case of undirected graphs.

a1

v1

v2

a2

a3

a4

a5
a6

v3

v4

a7
a1 a2 a3 a4 a5 a6 a7

v1 0 1 -1 0 0 0 0
v2 0 -1 0 -1 1 0 0
v3 0 0 1 1 -1 -1 0
v4 0 0 0 0 0 1 0

Figure 3.2: A digraph with its associated incidence matrix.
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Connectivity for directed graphs

Connectivity is also an important concept for directed graphs. To define
connectivity for digraphs, we need the equivalent notions of paths.

Definition 3.4: Consider a digraph D. A directed (v0, vk)-walk in D is an alter-
nating sequence [v0, a0, v1, a1 . . . vk−1, ak−1, vk] of vertices and arcs from D with
ai = 〈−−−−→vi, vi+1〉. A directed trail is a directed walk in which all arcs are distinct; a
directed path is a directed trail in which all vertices are also distinct. A directed
cycle is a directed trail in which all vertices are distinct except for v0 and vk.

Note that the definitions of walk, trail, path, and cycle are indeed completely
analogous to those for undirected graphs. The concept of a path and a cycle
are practically spoken the most important ones. We can now define the
connectivity of a digraph as follows:

Definition 3.5: A digraph D is strongly connected if there exists a directed path
between every pair of distinct vertices from D. A digraph is weakly connected if
its underlying graph is connected.

It is not difficult to imagine that the concept of connectivity indeed plays
an important role in directed graphs. As we explained, communication net-
works are conveniently modeled as directed graphs. In these networks, it is
important that a message from an arbitrarily chosen node u can be routed
through the network to any other node. This requirement is equivalent to
stating that the associated directed graph is strongly connected. Likewise,
in transportation networks it is important that for an arbitrarily chosen node
we can find a route to any other node. Again, this is the same as stating that
we want the associated directed graph to be strongly connected.

Note 3.2 (More information)
If being strongly connected is important you may conclude that weakly con-
nected digraphs are not that interesting. There is one important type of weakly
connected digraph: a so-called directed acyclic graph, or simply DAG. A DAG
is a directed graph without any directed cycle. In practice, DAGs are also as-
sumed to be weakly connected.

Directed acyclic graphs have many applications, of which a large number
deal with expressing dependencies. For example, work plans are generally bro-
ken down into smaller units such as activities. To execute a work plan, there
will be many activities that can start only after the completion of other activi-
ties. These plans are conveniently modeled as directed graphs, in which a ver-
tex represents an activity and an arc from vertex u to v the fact that activity v
can start only after u has completed. For such plans, we demand that the graph
is indeed acyclic.
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To test for connectivity in directed graphs, we can perform a simple
reachability analysis. A vertex v in a digraph D is said to be reachable from
vertex u, if there exists a directed (u, v)-path in D. To compute the vertices
that can be reached from a given vertex u, we can proceed as follows:

Algorithm 3.1 (Reachable vertices): Let Rt(u) denote the set of reachable vertices
from u found after t steps.

1. Set t← 0 and R0(u)← {u}.
2. Construct the set Rt+1(u)← Rt(u) ∪v∈Rt(u) Nout(v).

3. If Rt+1(u) = Rt(u), stop: R(u) ← Rt(u). Otherwise, increment t and
repeat the previous step.

This is an example of a breadth-first algorithm, so called because at each
step each newly added vertex is examined. We shall discuss more of such
algorithms in Chapter 4. The essence of the algorithm is simple: we sys-
tematically expand the set R(u) of vertices reachable from u with any new
out-neighbors that can be reached once a vertex has been added to R(u).
Clearly, if no new neighbors are discovered [which is when Rt+1(u) is equal
to Rt(u)], we will have identified all reachable vertices. Then, the digraph
D will be strongly connected if and only if:

∀u ∈ V(D) : R(u) = V(D)

Note that we can also apply the same method for checking the connectivity
of an undirected graph. We leave the description of that algorithm as an
exercise.

Note 3.3 (Algorithmics)
This algorithm is expressed rather rigorously. As before, we use the notation
x ← S to express that the variable x takes the value resulting from evaluating
the expression S. If we were to translate this algorithm into English, we would
have something like:

1. Set t to 0, and let R0(u) initially contain only u.
2. Add to Rt(u) all the vertices w that can be reached by an arc from v to w,

where v is already contained in Rt(u). Name this new set Rt+1(u).
3. If there are no vertices that can be added to Rt+1(u) we’re done.

Making such informal translations can considerably help in understanding
an algorithm. However, it should also be clear that we need the precision of the
formal notation if we are to construct a program that does the job. In fact, from
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the formal notation we can readily derive the following fragment of pseudo-
code. (We use Nall to store all out-neighbors found so far, and Rnow for the
vertices that still need to be checked.)

t← 0; R0(u)← {u};
repeat

Nall ← ∅; Rnow ← Rt(u);
while Rnow 6= ∅ do

select any v ∈ Rnow; Rnow ← Rnow − {v};
Nall ← Nall ∪ Nout(v);

end while;
Rt+1(u)← Rt(u) ∪ Nall ; t← t + 1;

until Rt(u) = Rt−1(u);
Pseudo-code combines concepts from programming languages with mathemat-
ical and natural-language statements. The programming-language concepts are
generally used for expressing the flow of control in an algorithm, that is, the
order in which statements need to be executed. The statements themselves
are written in some convenient notation. As can be seen from this example,
the next step toward an actual implementation would mostly involve program-
ming constructs for declaring and handling sets, but is otherwise independent
of the algorithm.

Instead of testing for strong connectivity, we can also ask ourselves if
and how we can provide an orientation for a given (connected) undirected
graph such that the resulting directed graph is strongly connected. This
question is relevant, for example, when designing a traffic circulation plan
in which most streets should be one-way. The following theorem gives a
necessary and sufficient condition for providing such an orientation.

Theorem 3.2: There exists an orientation D(G) for a connected undirected graph
G that is strongly connected if and only if λ(G) ≥ 2. In other words, G cannot be
1-edge-connected.

Proof. Let us first consider a strongly connected orientation D of G. We
prove, by contradiction, that G is 2-edge-connected. To that end, assume
that G is not 2-edge-connected and that the removal of e = 〈u, v〉 discon-
nects G, that is G − e falls into two components G1 and G2. Clearly, we
can assign only one orientation to e, that is, D(G) will either contain the
arc a = 〈−→u, v〉 or the arc a′ = 〈−→v, u〉. Because all paths in G from a vertex
x ∈ V(G1) to a vertex y ∈ V(G2) will contain e, it is also clear that with
either orientation of e, D(G) cannot be strongly connected, which violates
our initial assumption. Hence, G cannot be 1-edge-connected and therefore
is (at least) 2-edge-connected.
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We now need to prove necessity, that is, λ(G) ≥ 2, then there exists a an
orientation D of G that is strongly connected. Consider a 2-edge-connected
undirected graph G. From Corollary 2.3 we know that every edge of G lies
on a cycle. Consider a cycle C = [v1, v2, . . . , vn, v1]. We replace each edge
〈vi, vi+1〉 with an arc 〈−−−−→vi, vi+1〉 and edge 〈vn, v1〉 with arc 〈−−−→vn, v1〉. Any edge
〈vi, vj〉 between nonadjacent vertices on C can be oriented arbitrarily. This
situation is shown in Figure 3.3(a). Clearly, if V(C) = V(G) we will have
constructed a strongly connected orientation of G.

v

v
1

v
n

v
3

2 v

v1

vn

vi-1

vj+1

2

v

v

j

i

w

w
w

w

w

2
3

2

3

(a) (b)

Figure 3.3: The construction of a strongly connected orientation. In (a) we have
found part of the orientation by considering a cycle C. In (b), the existing orientation
is extended for vertices not lying on C.

Assume V(C) 6= V(G) so that we have not yet covered all vertices of G.
Let w be such a vertex, i.e., w 6∈ V(C). Because G is 2-edge-connected, we
know from Corollary 2.2 that there are two edge-independent paths con-
necting w to v1, as shown in Figure 3.3(b). Without loss of generality, we
may assume that these two paths partly overlap with C. One path, P1, will
have the form [w = w1, w2, . . . , wk, vj, vj+1, . . . , v1]. The other will neces-
sarily have the form [w = w1, w2, . . . , wl , vi, vi−1, . . . , v1], where 1 ≤ i ≤
j ≤ n. We then transform each edge 〈wx, wx+1〉 to the arc 〈−−−−−→wx, wx+1〉, and
each edge 〈wy, wy+1〉 to 〈−−−−−→wy+1, wy〉. Again, edges between nonadjacent ver-
tices on P1 and P2 may be oriented arbitrarily. It should be clear that all
vertices in W = V(C) ∪ V(P1) ∪ V(P2) are connected through two edge-
disjoint paths in D.

If there is still a vertex in V(G)\W, we simply repeat the procedure un-
til all edges have been provided with an orientation. The result will be a
strongly connected orientation of G.

Again, notice how our proof consists of a part proving sufficiency, and a part
proving necessity.
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Note 3.4 (Proof techniques)
This is typically one of those proofs where visualization is almost a necessity.
In fact, the proof by itself is not even that difficult to produce once you have
a fairly clear picture of what is going on. In this case, the more difficult part
is providing the correct mathematical notations and statements. As we have
argued before, in cases such as these it makes sense to practice reproducing the
proof so that you force yourself to be precise and to get further acquainted with
the language of mathematics.

Another issue worthwhile noting about this proof, is that we stated that
without loss of generality, we could assume that both P1 and P2 overlap with C.
This is an important assumption: a special case would be when there would be
no overlap. However, note that our proof also covers the cases when either one
or both paths would be edge independent from C. In that case, the proposed
orientation would still ensure that there is a directed path from w to v1 and one
from v1 to w, which is exactly what we required for being strongly connected.

Finally, note that we have made use of two proof techniques. To prove that
G is 2-edge-connected when there is a strongly connected orientation, we ap-
plied a proof by contradiction. Proving that there is a strongly connected orien-
tation when G is 2-edge-connected was accomplished by a proof by construc-
tion. As mentioned before, the latter has the strong advantage that we actually
show how to obtain such an orientation.

As mentioned, digraphs play an important role when modeling real-
world networks. We will come across various applications in later chapters,
but notably when considering the Web in Chapter 8, it will become clear
that the concepts of connectivity and (in)degree distribution play a crucial
role in obtaining a deeper insight in the organization of the world’s largest
information system.

3.2 Weighted graphs

Let us now direct our attention to another important extension of the foun-
dations discussed in Chapter 2, namely assigning weights to edges (or arcs).
A weight is a real-valued number associated with an edge. This extension is
a natural one when modeling real-world networks as graphs. For example,
when modeling a railway network as a graph, railway stations are natu-
rally represented by vertices, whereas two adjacent stations are connected
by means of an edge. We then assign a weight to an edge representing the
distance between those two stations.

Definition 3.6: A weighted graph G is a graph for which each edge e has an asso-
ciated real-valued number w(e) called its weight. For any subgraph H ⊆ G, the
weight of H is simply the sum of weights of its edges: w(H) = ∑e∈E(H) w(e).

65



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

A commonly adopted convention for weighted graphs is to simply write
that w(〈u, v〉) = ∞ when vertices u and v are not adjacent. This also means
that for each edge e ∈ E(G) we demand that w(e) < ∞.

We often use weighted graphs to find subgraphs with a maximal (or
minimal) weight. In particular, we can use them to determine the distance
between two vertices, which is formally defined as follows.

Definition 3.7: Consider an undirected graph G and two vertices u, v ∈ V(G). Let
P be a (u, v)-path having minimal weight among all (u, v)-paths in G. The weight
of P is known as the (geodesic) distance d(u, v) between u and v. Path P is called
a shortest path (u, v)-path, or a geodesic between u and v.

Finding shortest paths is a central problem in virtually all communication
networks. Fortunately, there exists an efficient algorithm for computing the
shortest paths from a given vertex u to all other vertices in a given undi-
rected graph. Again, this is an example of a breadth-first algorithm.

The algorithm, due to the Dutch mathematician Edsger Dijkstra, was
developed in 1959 and forms the core of many so-called routing algorithms
that are used in the Internet. It is beyond doubt one of the most important
algorithms in modern communication networks. The principle is as follows.
Consider an undirected graph G, a vertex u ∈ V(G), and the set S(u) of
vertices whose shortest path from u has already been found. In each step
we, consider the set of vertices that are adjacent to some vertex in S(u) but
do not belong to S(u) yet. We pick the one among these vertices that is
closest to u and then add it to S(u).

Before we formally describe the algorithm, let us consider an example.
In Figure 3.4 we see a simple graph for which we want to find the shortest
paths originating from vertex v0. We start with initializing S(v0) to {v0}
and consider the vertex that is closest to v0. In our example, this vertex is
v3, which is subsequently added to the set S(v0). In addition, we label v3
with (k, d), where k is the index of the vertex through which v0 can reach v3
(which, in this case, is v0, i.e., k = 0), and d is the length of the shortest path
to v3 (with d = 1 in this example).

The procedure continues with identifying the vertex closest to v0 that can
be reached from any vertex in S(v0), which is now equal to {v0, v3}. Clearly,
this is vertex v2, which is then added to S(v0) and receiving label (0, 3). The
next vertex to add is v5: with S(v0) now being equal to {v0, v2, v3}, the
vertices reachable from S(v0) are v1, v4, v5, and v6, at distances 5 (via v2),
6 (via v0), 4 (via v2), and 5 (via v3), respectively. After adding v5 to S(v0)
and giving it label (2, 4), we can choose either v1 or v6, which are both at
distance 5 from v0. This procedure continues until all vertices from G have
been added to S(v0). Let us now formally describe Dijkstra’s algorithm.
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Figure 3.4: Computing the shortest paths from v0.

Algorithm 3.2 (Dijkstra): Consider an undirected, simple weighted graph G. Edge
weights are required to be nonnegative. Consider a vertex u. We introduce the
following sets and labels:

• Let St(u) be the set of vertices to which a shortest path from vertex u has been
found after step t.

• Each vertex v is assigned a label L(v) def
=
(

L1(v), L2(v)
)
, in which L1(v) is

the vertex preceding v in the shortest (u, v)-path found so far, and L2(v) the
total weight of that path.

• Let Rt(u) def
= St(u) ∪v∈St(u) N(v), with N(v) denoting the neighbor set of

v. In other words, Rt(u) consists of all vertices in St(u) and their neighbors.
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1. Initialize t← 0 and S0(u)← {u}. Furthermore, for all v ∈ V(G):

L(v)←
{
(u, 0) if v = u
(−, ∞) otherwise

2. For each vertex y ∈ Rt(u)\St(u), consider the vertices N′(y) that are neigh-
bors of y that lie in St(u), i.e., N′(y) def

= N(y) ∩ St(u). Select x ∈ N′(y)
for which L2(x) + w(〈x, y〉) is minimal. Set L(y)←

(
x, L2(x) + w(e)

)
.

3. Let z ∈ Rt(u)\St(u) for which L2(z) is minimal. Set St+1(u) ← St(u) ∪
{z}. If St+1(u) = V(G), stop. Otherwise, t← t + 1, compute Rt(u) again
and repeat the previous step.

Note 3.5 (Algorithmics)
Admittedly, the formal description of Dijkstra’s algorithm is not an easy read.
This is partly caused by the fact that we need to express the flow of control,
which is rather awkward. Using pseudo-code, things become much easier to
read. Strictly following our previous notations, yet omitting the step counter t,
we obtain the following code fragment:

S(u)← {u}
L(u)← (u, 0); for each v ∈ V(G), u 6= v : L(v)← (−, ∞);
while S(u) 6= V do

R(u)← S(u) ∪v∈S(u) N(v);
for all y ∈ R(u)\S(u) do

for all x ∈ N(y) ∩ S(u) do
if L2(x) + w(〈x, y〉) < L2(y) then

L(y)←
(

x, L2(x) + w(〈x, y〉)
end if

end for
end for
select v /∈ S(u) where L2(v) is minimal;
S(u)← S(u) ∪ {v};

end while

What this pseudo-code actually reveals is that the flow of control in Dijkstra’s
algorithm is actually quite intricate, yet that it can be completed separated from
setting labels and such. Here’s a good example where pseudo-code may help
to better understand an algorithm.

Dijkstra’s algorithm effectively creates what is known as a tree T(u) that
is said to be rooted at u, in this case meaning that only (u, v)-paths are of
interest. In general, using Dijkstra’s algorithm for a different vertex yields
a different rooted tree. This can be readily observed when computing, for
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example, T(v4) from Figure 3.4, which we leave as an exercise. Note also
that there may be more than one shortest path between two vertices u and
v. In other words, there may be several (u, v)-paths all having the same
minimal weight.

We shall return to shortest path algorithms, as well as various other tree-
related problems in Chapter 5.

3.3 Colorings

As our last example of extensions to the foundations of graph theory dis-
cussed so far, we consider a simple labeling of edges and vertices known as
edge colorings and vertex colorings, respectively. Colorings have interest-
ing applications.

Edge colorings

Coloring graphs has drawn the attention from many researchers for the sim-
ple reason that there are so many applications that can be modeled using
graph colorings. Coloring a graph means assigning a color to vertices or
edges. In the case of edge colorings we are interested in assigning colors
such that edges incident with the same vertex have different colors. Ob-
viously, if a graph has m edges, we can use m different colors to establish
a valid edge coloring. The trick is to find the minimal number of colors
needed. Before discussing formalities, let’s have a look at a simple, yet il-
lustrative and realistic application discussed by Hall et al. [2001].

We consider a collection of n storage devices. For whatever reason, at
a certain point it is necessary to move data between these devices. For ex-
ample, after having observed the access patterns from users to data, it turns
out that certain devices receive many more read/write requests than others,
turning those devices into potential bottlenecks. By rearranging where data
is stored, it may be possible to balance the load better and as a consequence
remove bottlenecks.

This situation can be modeled as a directed graph with multiple arcs.
Each storage device is represented by a vertex. We divide all data into
equally sized units (which, in fact, is not unreasonable in practice, as files
are generally divided into multiple blocks of data, each having the same
size). If a block needs to be migrated from device i to j, we represent this
by an arc 〈−→i, j〉. In this way, every data block that needs to be migrated is
represented by an arc. We now ask ourselves how quickly we can execute
the complete rearrangement of data over the devices.
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There are a few issues to consider. First, a device can be involved in only
one migration at a time. In other words, if block b is being moved from i
to j, then neither i nor j can be involved in migrating any other block of
data. Second, we assume that all devices are connected to each other. In
other words, it is possible to migrate data directly from any storage device
to any other. Finally, we make the assumption that, if b is to be moved to j,
then j has enough space left to store b. It is thus not necessary to first make
space available on j, for example, by migrating another block b′ from j to,
say, device k.

To illustrate the problem at hand, consider four devices and a total of five
blocks that need to be migrated as shown in Figure 3.5(a). In this case, it can
be readily verified that in the final situation, there will 1 block in device
1, 1 block in device 2, 2 blocks in device 3, and 1 block in device 4. Such
a migration will typically have been motivated by observing accesses for
blocks, and subsequently redistributing the blocks in such a way that, for
example, every device is receiving a fair number of access requests per time
unit.

Device 1 Device 2

Device 3 Device 4

2

1 3

4

5

Device 1 Device 2

Device 3 Device 4

1

2 2

1

3

(a) (b)

Figure 3.5: (a) A sequential migration of blocks between four devices. (b) An opti-
mal 3-step schedule shown as an optimal edge coloring.

Obviously, we can move each block one at a time, which will take five
time units. Migrations that are scheduled at time tk are shown by the label
“k” on an arc. In this case, every label as attached to an edge represents
a color. The situation in Figure 3.5(a) thus reflects a situation in which we
have used five different colors. Note that the requirement that a device can-
not be involved in more than one migration at a time corresponds precisely
to that of edge colorings: all arcs or edges incident to a vertex need to have a
different color. A more efficient schedule is shown in Figure 3.5(b) in which
a number of migrations take place simultaneously. The situation sketched in
Figure 3.5(b) corresponds to a minimal edge coloring with three different col-
ors. Specifically, we can complete the migration in three time units, instead
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of the original five.
Formally, edge colorings are defined as follows:

Definition 3.8: Consider a connected, loopless graph G. G is k-edge colorable if
there exists a partitioning of E(G) into k disjoint sets E1, . . . , Ek such that no two
edges from the same Ei are incident with the same vertex.

Note 3.6 (Mathematical language)
A partitioning of a set S is formally defined as a collection of sets S1, . . . , Sk such
that

• Each Si is a subset of S, meaning that ∀i : Si ⊆ S
• These sets together constitute S, that is, S1 ∪ S2 ∪ · · · ∪ Sk = S, or, equiv-

alently ∪k
i=1Si = S

• No two sets have an element in common, which can be mathematically
written as ∀i 6= j : Si ∩ Sj = ∅

Now consider a graph G and a partitioning E of its edge set {E1, . . . , Ek}. Let Vi
be the set of vertices formed by the end points of edges in Ei. We leave it as an
exercise to show that E is an edge coloring of G if and only if |Vi| = 2 · |Ei|.

As mentioned, the edge-coloring problem for graphs is finding the minimal
k for which a graph G is k-edge colorable. This minimal k for a graph G is
called G’s edge chromatic number, denoted by χ′(G). If ∆(G) is the maxi-
mal degree of a vertex in graph G, it is obvious that χ′(G) ≥ ∆(G). We can
even be more specific if we consider simple graphs:

Theorem 3.3 (Vizing): For any simple graph G, either χ′(G) = ∆(G) or χ′(G) =
∆(G) + 1.

The proof is not difficult but somewhat involved and we omit it here. The
interested reader is referred to Bondy and Murty [1976].

Vertex colorings

Perhaps more than the edge-coloring problem, researchers have paid signif-
icant attention to the vertex-coloring problem. In essence, the problem boils
down to finding a coloring of the vertices of a (simple, connected) graph
such that no two adjacent vertices have the same color. The problem be-
comes interesting when we try to use a minimal number of different colors.

Definition 3.9: Consider a simple connected graph G. G is k-vertex colorable if
there exists a partitioning of V(G) into k disjoint sets V1, . . . , Vk such that no two
vertices from the same Vi are adjacent.

71



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Note 3.7 (Mathematical language)
The mathematical formulation that no two vertices from the same Vi are adja-
cent is:

∀Vi, ∀x, y ∈ Vi : @e ∈ E(G) : e = 〈x, y〉
where @ is to be read as “there does not exist...” In other words, for all pairs
of distinct vertices in Vi there is not an edge joining those two vertices. Note
that in Chapter 2 we mentioned that 〈x, y〉 is strictly speaking nothing else but
stating that x and y are adjacent. If use the notation ¬〈x, y〉 to indicate that x
and y are not adjacent, we can simplify our mathematical formulation to:

∀Vi, ∀x, y ∈ Vi : ¬〈x, y〉

It is important that you gradually become familiar with these type of formal
statements, but also that you can devise them yourself.

The vertex-coloring problem for a given graph G is finding the minimal k
for which G is k-vertex colorable. This minimal k is called the chromatic
number of G, denoted as χ(G).

Before we delve into various details, let us first consider a simple, yet
illustrative application of vertex colorings: scheduling classes. We consider
a set of n classes that need to be taught to a population of students. Two
classes are not allowed to be scheduled during the same time slot if they are
to be taught to the same group of students. The question is how to schedule
the classes in the minimal number of slots.

This problem can be modeled by means of a graph G in which the n
classes are represented by n vertices v1, . . . , vn. Two vertices are connected
by an edge if and only if there is a group of students to which the two classes
must be taught. It is not too difficult to see that the minimal number of slots
needed to teach all classes corresponds to χ(G), as we formally prove next.

Theorem 3.4: The minimum number of time slots needed for the class-scheduling
problem is the value of χ(G) of the associated graph G.

Proof. We first prove that we need at most χ(G) slots to schedule all classes.
From the definition of chromatic number, we know that any two vertices
with the same color cannot be adjacent. This also means that the two classes
associated with those two vertices need not be taken by the same group of
students. Hence, they can be scheduled at the same time, that is, for the
same time slot. In general, all vertices with the same color represent the set
of classes that can be scheduled at the same time. This means that χ(G) slots
are sufficient to schedule all classes.
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We now prove that we need at least χ(G) slots to schedule all classes.
Suppose that k < χ(G) slots are sufficient. Classes in the same slot should
be taught to different groups. In the graph G, this means that the vertices
representing those classes should be nonadjacent. As a consequence, we
should be able to use only k different colors yielding a k-vertex coloring of
G, which contradicts the fact that χ(G) is minimal.

Note 3.8 (Proof techniques)
In our proof we have applied two techniques: the well-known proof by contra-
diction, and what is known as a direct proof. We have applied the latter already
on several occasions, but this is the first time we mention it explicitly. As its
name suggests, a direct proof is a general technique by which you show a state-
ment to hold through straightforward deduction. In our proof, this straightfor-
ward deduction is done by simply considering the definition of the chromatic
number and setting up a logical reasoning.

An indirect proof is typically done by eliminating cases, and indeed, a proof
by contradiction is an example of an indirect proof.

Vertex colorings are often used in the context of scheduling and opti-
mization problems. Unfortunately, finding the chromatic number of a graph
is, in general, a notoriously difficult problem. As with determining whether
two graphs are isomorphic, we are dealing with a problem for which no
known efficient solution exists (at least not when considering graphs for
which χ ≥ 3). In effect, to determine the chromatic number we would,
in principle, need to test all color assignments before coming to conclusions
conclusions.

Fortunately, we can alleviate problems a bit: the chromatic number of a
graph G is bounded by its maximal vertex degree ∆(G):

Theorem 3.5: For any (simple, connected) graph G, χ(G) ≤ ∆(G) + 1.

Proof. We prove that the theorem holds by induction on the number n of
vertices of G. For n = 1, we need to consider the complete graph K1. Obvi-
ously, χ(K1) = 1 and ∆(K1) = 0, so that the theorem holds.

Now assume the theorem holds for all graphs on k > 1 vertices, and
consider a graph G with k + 1 vertices. Let vertex v ∈ V(G) with δ(v) =
∆(G). The graph G∗ = G− v has k vertices, so there exists a vertex coloring
C∗ of G∗ with χ(G∗) ≤ ∆(G∗) + 1 different colors. If ∆(G) = ∆(G∗), then
in the worst case, the number of colors used in G∗ is χ(G∗) = ∆(G∗) + 1 =
∆(G) + 1. Considering that v has ∆(G) neighbors, this means that there is
a color available from the ones used in G∗ that we can use for v and which
has not been used for any of v’s neighbors.
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On the other hand, if ∆(G) > ∆(G∗), then we can simply permit our-
selves to introduce a new color for v and use the ones from an optimal col-
oring of G∗ for all other vertices. At worst, we will then have that χ(G) =
χ(G∗) + 1 ≤ ∆(G∗) + 2. If ∆(G∗) < ∆(G), then the smallest value of ∆(G)
for which this inequality is true, is, of course, when ∆(G) = ∆(G∗) + 1.
Therefore, we know that ∆(G∗) + 2 ≤ ∆(G) + 1, so that we indeed have
that χ(G) ≤ ∆(G) + 1.

Coloring vertices would have perhaps been just one of those many graph-
theoretical problems, if not for an intriguing conjecture that proved to be
extremely difficult to tackle. Consider an arbitrary area map, such as one
consisting of countries. We ask ourselves a simple question: if we are to
color each country such that no two neighboring countries have the same
color, how many different colors do we need at most? The answer turns out
to be four, but it took more than 120 years to find it! Even worse, it took
a computer program to find the answer. Many mathematicians were not
amused.

Let’s see what this map-coloring problem has to do with vertex colorings
of graphs. First, the problem is easily translated into finding vertex color-
ings of a planar graph. Each country is represented by a vertex, and two
vertices are joined by an edge if and only if they are neighbors (i.e., they
share a border). Figure 3.6 shows the map of Europe and its corresponding
planar graph.1

In 1852, the map-coloring problem surfaced and some specific cases were
proven. However, it wasn’t until 1976 that Appel and Haken [1976] actually
solved it. More formally, they proved:

Theorem 3.6: For any planar graph G, χ(G) ≤ 4.

The only problem with their proof was that it was extremely difficult to ver-
ify. First, they split the problem into over 2000 different cases. Second, they
wrote computer programs to test each case. This approach was received
with a lot of reservations, notably also because researchers claimed that one
would need to formally prove the correctness of the computer programs
before considering their outcomes to be correct. It may be clear that Ap-
pel and Haken had entered the gray area between elegant mathematics and
mechanical case testing by computers. So far, a “traditional” mathematical
proof has not yet been found. It is worth noting that at that time it took
more than 1200 hours of compute time to tackle the four-color conjecture.
By now, however, there is no more debate about the correctness of the con-
jecture [Appel and Haken, 1986].

1For simplicity, some specific details have been omitted.
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Figure 3.6: A map of Europe and its corresponding representation by a planar
graph, along with a four-coloring of the vertices.

To illustrate how complications can easily sneak into mathematics, it
turns out that it is relatively easy to prove that the chromatic number of
a planar graph is less than or equal to 5. Before we give this proof, we need
to prove the following:

Theorem 3.7: Every planar graph G has a vertex v with δ(v) ≤ 5.

Proof. For all planar graphs with n ≤ 6 vertices, the theorem is obviously
true. For planar graphs with n > 6, we prove the theorem by contradiction.
To this end, consider a planar graph G for which n > 6. Let m be the number
of edges of G. We know that ∑v∈V(G) δ(v) = 2m. Therefore, if there is no
vertex with degree 5 or less, then 6n ≤ 2m. In addition, from Theorem 2.9
we know that m ≤ 3n− 6, and thus that 6n ≤ 6n− 12. Obviously, this is
false, meaning that our assumption that there is no vertex with degree 5 or
less must be false as well.
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Note 3.9 (Proof techniques)
Note that this proof by contradiction tells us that there must be a vertex with
degree less or equal to five, but it gives us no further hints on how to find
such a vertex. This is typical for existential proofs, in contrast to proofs by
construction.

Following Chartrand [1977], we now prove the following theorem by induc-
tion on the number of vertices:

Theorem 3.8: For any planar graph G, χ(G) ≤ 5.

Proof. Let n = |V(G)|. For n = 1, the theorem is obviously true. Assume
the theorem holds for all planar graphs with k > 1 vertices and consider
a graph G with k + 1 vertices. Let vertex v with δ(v) ≤ 5 (we just proved
that such a vertex exists), and consider the graph G∗ = G − v. Because
|V(G∗)| = k, we know there exists a 5-vertex coloring of G∗, with, say,
colors c1, . . . , c5. If not all of these colors are used by the vertices in the
neighbor set N(v) of v, we can assign the unused color to v and will thus
have constructed a 5-vertex coloring of G.

Consider the situation that all five colors have been used for coloring the
vertices of N(v). Note that δ(v) = 5 so that we may assume that N(v) =
{v1, . . . , v5} and that vertex vi has color ci according to a clockwise ordering
of these vertices around v, as shown in Figure 3.7. We will rearrange the
colors of G∗ such that we can assign one of the colors ci to v.

v

v1

v2

v3

v4

v5

Figure 3.7: The ordering of vertices adjacent to v. Vertex vi has color ci.

Let us first assume that there is no (v1, v3)-path in G∗ for which all ver-
tices have been colored either c1 or c3. Now consider all paths in G∗ that
originate in v1 and for which the vertices are colored either c1 or c3. These
paths induce a subgraph H of G∗. Note that v3 6∈ V(H), as this would mean
that there is a (v1, v3)-path. For the same reason, none of v3’s neighbors can
be in H, i.e., N(v3) ∩ V(H) = ∅. What we can then do is interchange the
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colors c1 and c3 in H, which leads to another 5-vertex coloring of G∗. How-
ever, in this case, vertex v1 will be colored c3, and none of the vertices in
N(v) will be colored c1. Therefore, we can use c1 for v.

Let us now assume that there is a (v1, v3)-path P in G∗ for which all ver-
tices have been colored either c1 or c3. Consider the cycle [v3, v, v1, P]. This
cycle either encloses v2 (as shown in Figure 3.7), or it encloses v4 and v5.
Hence, because G is planar, there can be no (v2, v4)-path in G∗ whose ver-
tices are colored using only c2 and c4. Again, consider all paths originating
in v2 and that have either color c2 or c4. As before, these paths induce a
subgraph H′ of G∗. We interchange the colors of the vertices in H′, allowing
us to assign color c2 to v, and thus leading to a 5-vertex coloring of G.

There are many other properties related to coloring vertices, but we shall
not discuss these any further. By now, it should have become clear that ver-
tex coloring imposes a number of very difficult questions (such as efficiently
finding the chromatic number of a graph), and that even under relatively fa-
vorable conditions such as planarity, taking a small step from one problem
formulation (“χ ≤ 5”) to another (“χ ≤ 4”) can make a difference between
simple and complicated solutions.
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With the material presented in the previous chapters we have enough tools
in our hands to start studying problems related to the traversal of networks.
Network traversal problems focus on optimizing a walk that contains all
vertices of a graph, also referred to as a spanning walk. Recall that a (v0, vk)-
walk was defined as an alternating sequence

W = [v0, e1, v1, e2 . . . vk−1, ek, vk]

of vertices and edges, where edge ei = 〈vi−1, vi〉.
One category of spanning walks that we’ll consider is the one containing

closed walks that also traverse each edge in a graph. These walks are also
known as tours. An important question is to find tours in which edges are
additionally crossed as few times as possible. Another important category
is formed by spanning cycles. In other words, closed spanning walks in
which all vertices are distinct. This so-called Hamilton cycles play a crucial
role when we also try to minimize the total distance covered, which occurs
when considering weighted graphs. Let us take a closer look at these two
types of spanning walks.

4.1 Euler tours

We start our discussion with probably one of the oldest graph-theoretical
problems: is it possible to traverse a graph such that all the edges are crossed
exactly once? Of course, this was not how the original problem was formu-
lated. The problem originated in the city of Königsberg (now called Kalin-
grad) that was divided by the river Pregel. The several parts of the city were
connected by means of seven bridges, as shown in Figure 4.1. The popu-
lation of Königsberg had been amusing themselves for some time with a
simple question: is it possible to walk through the city and cross each of the
bridges exactly once? The answer is simply “no,” but in order to understand
why, we need graph theory.

Of course, if we were dealing with a puzzle applicable only to the old
city of Königsberg, one could justifiable question whether it should deserve
any serious attention at all. However, it turns out that the problem is eas-
ily generalized to other situations. An important one that we will discuss
below is finding a spanning walk that covers every street of a city, but such
that each street is preferably passed through at most once. This is the same
as finding a tour with minimal total weight, where weight is defined by the
length of a street. As said, we return to this important application below,
after discussing some basic issues.
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Figure 4.1: The seven bridges crossing the river Pregel in Königsberg.
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Figure 4.2: The bridges of Königsberg modeled as a graph.

Constructing an Euler tour

Returning to the seven bridges of Königsberg, we can model the problem by
representing each area separated by a bridge as a vertex, and each bridge by
an edge connecting two separated areas, leading to the graph (with multiple
edges) shown in Figure 4.2. The people of Königsberg were interested in
finding a specific tour:
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Definition 4.1: A tour of a graph G is a (u, v)-walk in which u = v (i.e., it is a
closed walk) and that traverses each edge in G. An Euler tour is a tour in which
all edges are traversed exactly once.

Euler tours were named after the Swiss mathematician Leonhard Euler who
initially solved the problem of the Königsberg bridges. To this end, he
proved the following theorem:

Theorem 4.1: A connected graph G (with more than one vertex) has an Euler tour
if and only if it has no vertices of odd degree.

Proof. First, assume that P is an Euler tour of G, originating and ending in,
say, vertex v. Consider a vertex u different from v. Obviously, u lies on P and
for each edge 〈w1, u〉 ∈ E(P) that is used for “entering” u, there is a unique
other edge 〈u, w2〉 traversed for “leaving” u. Moreover, because these edges
are traversed exactly once, edges for entering u are always uniquely paired
with edges for leaving u. Hence, the degree of u must be even. By a similar
reasoning, the degree of v must also be even. We conclude that all vertices
of G have even degree.

Conversely, assume that all vertices of G are of even degree. We now
need to prove that G has an Euler tour. To this end, select an arbitrary ver-
tex v and construct a trail P by subsequently traversing edges until it is no
longer possible to traverse an edge not belonging to P. Let w be the vertex
where P ends. If w 6= v, then clearly we have “entered” w once more than
we have “left” it, meaning that δ(w) is odd. This violates our assumption,
hence w = v and hence P must be a closed trail.

If E(P) = E(G) we have just constructed an Euler tour and we’re done.
Now assume E(P) 6= E(G), that is E(P) ⊂ E(G). Because G is connected,
there is a vertex u of P incident with edges that are not part of P. Consider
the induced subgraph constructed by simply removing all edges that are
part of P: H def

= G− E(P). Note that H may be disconnected. Because every
vertex in G has even degree, but also every vertex in P, so will every vertex
in H have even degree. Let component H′ contain u. Again, construct a
(closed) trail P′ in H′ originating in u until no more edges can be added that
are not yet contained in P′. Because |E(P′)| > 0, merging P and P′ will
yield a larger trail in G. If this larger trail does not contain all edges of G, we
repeat the procedure until we have constructed a closed trail containing all
edges of G. This trail will form an Euler tour.

Note 4.1 (Proof techniques)
Our proof by construction uses an important proof technique, called extremal-
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ity [West, 2001]. The essence of this technique is that we consider extreme cases,
such as a path or trail of maximal length. Note that in our example, the mere
fact that we construct P such that it is indeed of maximal length leads us to con-
clude that it is a closed trail. There are many other situations in which exploring
extremality is necessary to draw conclusions and we will encounter more ex-
amples throughout the text.

Defining an Euler trail as a (u, v)-trail of a connected graph G that tra-
verses all edges exactly once, it is not difficult to see that the following state-
ment is true:

Theorem 4.2: A connected graph G (with more than one vertex) has an Euler trail
if and only if it has exactly two vertices of odd degree. Moreover, the trail originates
and ends in the vertices of odd degree.

Proof. First, let P be an Euler trail originating in u and ending in v. By the
same reasoning as in the previous proof, all vertices except u and v must be
of even degree.

Conversely, assume G has exactly two vertices u and v of odd degree.
Consider the graph G∗ constructed from G by adding an edge e = 〈u, v〉.
All vertices in G∗ will now have even degree. Because G∗ is obviously also
connected, we know that G∗ has an Euler tour P. Removing e from P yields
an Euler trail for G.

So far, we have provided only some necessary and sufficient conditions
for a graph to be Eulerian. What is missing, of course, is a procedure by
which we can construct an Euler tour (if one exists). The most widely known
algorithm that accomplishes such a tour is due to a French mathematician,
Fleury.

Algorithm 4.1 (Fleury): Consider an Eulerian graph G.

1. Choose an arbitrary vertex v0 ∈ V(G) and set W0 = v0.

2. Assume that we have constructed a trail

Wk = [v0, e1, v1, e2, v2, . . . , vk−1, ek, vk].

Choose an edge incident to vk, but which is not yet part of Wk, that is, ek+1 =
〈vk, vk+1〉 and ek+1 ∈ E(G)\E(Wk). In addition, make sure that ek+1 is not
a cut edge of the induced subgraph Gk = G− E(Wk), unless there is no other
option.
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3. We now have a trail Wk+1. If there is no edge ek+2 = 〈vk+1, vk+2〉 to select
from E(G)\E(Wk+1), stop. Otherwise, repeat the previous step.

Obviously, Fleury’s algorithm constructs a trail in G: at no point will an edge
be selected that is already part of the walk Wk constructed so far. Hence,
Wk must be a trail. That the algorithm actually constructs an Euler tour is
formalized in the following theorem (see also Bondy and Murty [1976]).

Theorem 4.3: A trail constructed by Fleury’s algorithm in an Eulerian graph G is
an Euler tour of G.

Note 4.2 (Algorithmics)
Before we delve into the details of this theorem, note that there is something
special about it: it states that Fleury’s algorithm is correct. As a consequence,
if we prove this theorem, we will have shown that Fleury’s algorithm indeed
finds an Euler tour if one exists. Such theorem/proof combinations form a fun-
damental component of algorithm design in computer science. However, it is
important to make a distinction between the correctness of an algorithm and the
correctness of a program that implements that algorithm. In the latter case, we
need to take into account the fact that a program is executed by a computer and
that the statements we are using having precise meaning, that is, have formal
semantics.

Proof (*). Let’s first consider a trail Wn constructed by means of Fleury’s
algorithm that contains all edges of G. Assume that this trail starts in v0 and
ends in vn. We need to show that Wn is a closed trail, i.e., that v0 = vn. To this
end, consider the induced subgraph Gn = G− E(Wn). Because Wn consists
of all edges in G, each vertex in Gn must have degree 0. In particular, this is
true for vertices v0 and vn. If v0 6= vn, then they can only have odd degrees
in G, which is impossible, because we know that G is Eulerian and thus that
all vertices have even degree. Therefore, Wn must be a closed trail and thus
an Euler tour.

Now suppose that Wn is not an Euler tour of G. Again, let Wn be equal to
the sequence [v0, e1, v1 . . . vn−1, en, vn]. Not being an Euler tour means that
we were no longer able to select any edges incident with vn that had not
already been selected. A few observations are important.

• We necessarily have that v0 = vn, for if this were not the case and
there were no more edges incident with vn to select, then following
the same reasoning as before, δ(vn) would be odd, and thus G would
not be Eulerian.
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• Let En be the edges that are not part of Wn, i.e., En
def
= E(G)\E(Wn).

Because Wn is assumed not to be an Euler tour, we must have that
En 6= ∅. Let S be the set of vertices incident with edges from En. Some
of these vertices belong to Wn, and others do not. Note that vn 6∈ S, for
otherwise this would mean that it would be incident to an edge that is
not in Wn, meaning that Wn could have been expanded.

• Let S = V(G)\S. Note that vertices in S are not incident with edges
in En, and thus are incident only with edges from Wn. In particular,
vn ∈ S.

• Because all vertices in Wn have even degree, so will all the vertices in
the induced graph Gn

def
= G[En].

• Consider a vertex u from Gn[S]. By definition, u is incident with an
edge from En. Because G is Eulerian, the degree δG(u) of u in G is
even. Also, we just observed that δGn(u) is even. This can only mean
that the degree δGn [S](u) of u in in the induced subgraph Gn[S] of Gn
is even as well.

Let m be the largest index such that vm ∈ S and vm+1 ∈ S. In other words,
vm is the “last” vertex of Wn that is still in S, and thus incident with an
edge that is not part of Wn. All other vertices vm+1, . . . , vn are in S and thus
incident only with edges of Wn.

Now consider edge em+1 = 〈vm, vm+1〉. This edge is the only edge in
Gm between vertices in S and S. To see this, assume there is another such
edge e′ in Wm. Note that because e′ is incident with a vertex from S, e′ 6∈
E(Wn). On the other hand, if one of its end points belongs to S, then e′

would necessarily belong to E(Wn), which by construction is impossible. In
other words, both the end points of e′ must belong to S, and hence, no e′

exists. This also means that em+1 is a cut edge of Gm.
Let e be any other edge in Gm incident with vm. In Fleury’s algorithm

we prefer the selection of edges that are not cut edges. Because we selected
em+1, which is a cut edge, e must also be a cut edge of Gm. It is then surely
also a cut edge of the induced subgraph Gm[S]. Because Gn ⊂ Gm, we also
have that Gm[S] = Gn[S]. As noted, all vertices in Gn[S] and thus also in
Gm[S] have even degree. However, in a graph with only even-degree ver-
tices, there cannot be a cut edge (which we leave as an exercise to the reader).

We have now established a contradiction based on the assumption that
Wn is not an Euler tour of G. In other words, our assumption can only be
false, which completes the proof.
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Note 4.3 (Study tip)
Obviously, this is not an easy proof. However, despite its complexity, it is im-
portant to understand and be able to reproduce it, for it will force you to con-
sider every detail when making a next step. At the same time it is important
to grasp the big picture, namely that the construction of the proof is toward
reaching a contradiction based on the fact that Fleury’s algorithm prescribes
that we should preferably not select a cut edge. By showing that there was no
other choice (i.e., em+1 is necessarily a cut edge), yet at the same time there must
have been an alternative edge that was not a cut edge, we arrive at a contradic-
tion. This contradiction tells us that when executing Fleury’s algorithm, we are
constructing an Euler tour, if one exists.

To see how Fleury’s algorithm works, consider the graph in Figure 4.3.
At each step, the bold-faced edge is added to the trail Wk. When cut edges
incident with vk appear in Gk, they are marked as a dashed line. These are
the ones that we should prefer not to choose, but sometimes there is just
no alternative. Although Fleury’s algorithm is apparently elegant and sim-
ple, the difficulty in its practical execution is determining whether a selected
next edge is a cut edge or not. It is for this reason that more efficient algo-
rithms have been developed.

The Chinese postman problem

Let us now consider a practical application of Euler’s research: the Chinese
postman problem, so-called because it was first postulated by the Chinese
mathematician Kuan [1962]. This problem is more general and also more
complicated than that of finding an Euler tour. Consider a weighted graph
G in which each edge has a nonnegative weight. The problem is to find a
closed walk W = [v0, e1, v1 . . . vn−1, en, vn] that covers all edges of G, but
with minimal weight. In other words, E(W) = E(G) and ∑n

i=1 w(ei) is min-
imal. Note that we do not demand that each edge is traversed exactly once,
for in that case we would have an Euler tour, and obviously, such a walk
would automatically have minimal weight. Instead, we are aiming for a
closed walk such that if it is necessary to cross an edge more than once, that
the walk is such that the total weight is kept as low as possible.

The Chinese postman problem is a generalization of many traversal prob-
lems. Consider the following examples.

Routing garbage trucks: In order to collect the garbage in a specific neigh-
borhood, garbage cans are placed on the curb once a week to be emp-
tied by trucks. An optimal route for a truck consists of passing through
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Figure 4.3: An illustration of Fleury’s algorithm.

each street at least once, and possibly more, but in such a way that the
total elapsed distance is minimal.

In this example, we model the neighborhood as an undirected graph
in which each junction is represented by a vertex and a street as an
edge with its weight corresponding to the length of the street. A vari-
ation of the problem is to allow a truck to start and end at a different
location. In that case, the walk need not be closed, yet we still need to
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make sure that every edge is crossed at least once.

Routing a postman: Somewhat similar is determining an optimal route for
a postman. However, in this case we need to take into account that
streets normally have houses on both sides of a road. Rather than
letting a postman cross the street from one side to the other all the
time, we assume that he first delivers the mail to one side, and later to
the other.

In this case, a junction is again represented by a vertex, yet a street
with houses on both sides is represented by two edges, each edge ef-
fectively representing one row of houses.

Checking a Web site: Typically, a Web site consists of numerous pages, in
turn containing links to each other. As is so often the case, most Web
sites are notoriously poor at having their links maintained to the cor-
rect pages. This is often due to the simple reason that so many people
are responsible for maintaining their part of a site. Apart from links
that are broken (i.e., refer to nonexisting pages), it is often necessary
to manually check how pages are linked to each other.

Graph theory can help by modeling a Web site as an undirected graph
where a page is represented by a vertex and a link by an edge having
weight 1. Note that we are not using a directed graph, as we may
need to cross a link in reverse order, for example, when going back
to the original page. If a site is to be manually inspected, then we
are seeking a solution to navigate through a site, but with preferably
crossing a link at most once. This is now the same as finding a directed
walk containing all edges of minimal length.

Other examples easily come to mind, and some less obvious ones are de-
scribed by Thimbleby [2003] (which includes the case of navigating through
a Web site). These examples should make clear that we may sometimes
need to traverse an edge twice. Formally, these means that for a closed walk
W = [v0, e1, v1 . . . vn−1, en, vn] to be minimal, it may occur that for some
i 6= j, ei = ej.

In order to solve the Chinese postman problem, we proceed by trans-
forming a non-Eulerian graph into a Eulerian one by simply duplicating
edges. Duplicating an edge e = 〈u, v〉 means that we simply add an ex-
tra edge e∗ = 〈u, v〉 with the same weight as e. The trick, of course, is to
duplicate as few edges as possible and such that the added total weight
of the resulting graph is minimal. Once we have transformed the original
graph into a Eulerian one, we can apply Fleury’s algorithm to find an Euler
tour. Note that by ensuring that the total weight of the transformed graph
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is minimal, we also ensure that our Euler tour in the transformed graph is
minimal.

Unfortunately, transforming a graph to a Eulerian one that has as less
weight as possible is not trivial. For example, suppose that edge e = 〈u, v〉
is incident with a vertex v with odd degree and vertex w with even degree.
Duplicating e will force us to subsequently reconsider vertex w, which in the
new situation will then have odd degree. A general solution, but which is
too complicated for our purposes to describe here, is given by Edmonds and
Johnson [1973]. A special case that is easy to solve is when there are only
two vertices having odd degree, say u and v. We can then use Dijkstra’s
algorithm to find a (u, v)-path having minimal weight, and subsequently
duplicate each edge on that path. We leave it as an exercise to show that the
result is indeed a minimum-weight Eulerian graph.

This approach can be easily generalized. Recall from Chapter 2 that ev-
ery graph has an even number of vertices with odd degree, say 2k. What we
are seeking are k paths each connecting two odd-degree vertices such that
no two paths have a source and destination vertex in common, and such that
the sum of their respective weights is minimal. Following Gibbons [1985],
we tackle this problem as follows.

Algorithm 4.2 (Chinese postman): Consider a weighted, connected graph G with
odd-degree vertices Vodd = {v1, . . . , v2k} where k ≥ 1.

1. For each pair of distinct odd-degree vertices vi and vj, find a minimum-weight
(vi, vj)-path Pi,j.

2. Construct a weighted complete graph on 2k vertices in which vertex vi and
vj are joined by an edge having weight w(Pi,j).

3. Find the set E of k edges e1, . . . , ek such that ∑ w(ei) is minimal and no two
edges are incident with the same vertex.

4. For each edge e ∈ E, with e = 〈vi, vj〉, duplicate the edges of Pi,j in graph G.

The resulting graph G∗ is Eulerian with minimal weight, for which we then apply
Fleury’s algorithm to find a minimum-weight Euler tour.

Let’s consider a simple example from Gibbons [1985] to demonstrate this
algorithm. Figure 4.4(a) shows our initial graph with odd-degree vertices
v1, v2, v3, and v4. We first find minimum-weight paths between all these
vertices. It is not difficult to verify that the following paths indeed have
minimal weight:

P1,2 = [v1, v2] (weight: 3) P2,3 = [v2, u3, u5, u4, v3] (weight: 5)
P1,3 = [v1, u2, v3] (weight: 3) P2,4 = [v2, u6, v4] (weight: 2)
P1,4 = [v1, u1, u5, v4] (weight: 5) P3,4 = [v3, u4, u5, v4] (weight: 4)
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Our next step is consider the weighted complete graph on the four vertices
v1, v2, v3, and v4 as shown in Figure 4.4(b). We are seeking to find a set of two
edges such that their total weight is minimal, and such that they do no have
any end points in common. This is achieved by the set {〈v1, v3〉, 〈v2, v4〉},
corresponding to the two paths P1,3 and P2,4. The edges of these two paths
are then duplicated, leading to the Euler graph with minimal weight as
shown in Figure 4.4(c).
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Figure 4.4: An example of solving the Chinese postman problem. (a) The initial
graph, (b) finding the optimal paths, (c) the expanded graph.

Note 4.4 (More information)
The solution to the Chinese postman problem builds on an important topic in
general graph theory, namely that of matchings. A matching M in a graph G is
a subset of the edges of G such that no two edges from M are incident with the
same vertex. Matchings are typically applied to situations in which we need to
team up pairs of some sort, and where each pair is subject to a constraint.

Consider, for example, a group of n people p1, . . . , pn and m tasks t1, . . . , tm,
with n ≥ m. A person pi can fulfill task tj with a certain expertise ei,j ∈ [0, 1],
where the value 0 represents the case that pi cannot fulfill tj. Assume that for
each task there is at least one person who can fulfill that task. We ask our-
selves what the best assignment of people to tasks is. This situation can be

91



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

modeled by means of a weighted bipartite graph, for which we are then seek-
ing a maximum-weight matching.

In the case of the Chinese postman problem, we are actually looking for a
perfect matching: a matching M such that every vertex in G is incident with
an edge from M. There are various solutions to finding optimal (weighted)
matchings, but we will not go into further details here. The interested reader is
referred to Gibbons [1985].

4.2 Hamilton cycles

Where Euler tours focus on traversing every edge in a graph, Hamilton
walks deal with traversing every vertex in a graph. In this section we con-
centrate on the problem of trying to construct a (closed) walk such that every
vertex is visited exactly once. As we shall see, not only is this an important
problem, it also turns out to be notoriously difficult if we want to optimize
on the distance traveled.

Properties of Hamiltonian graphs

We start with precisely defining what a Hamiltonian graph is, along with a
number of example applications.

Definition 4.2: Consider a connected graph G. A Hamilton path of G is a path
that contains every vertex of G. Likewise, a Hamilton cycle is a cycle containing
every vertex of G. G is called Hamiltonian if it has a Hamilton cycle.

What makes the issue of (non)Hamiltonian graphs so difficult is that, in con-
trast to Euler tours, there is no known efficient procedure by which one can
in general determine whether a graph is Hamiltonian or not. On the other
hand, finding Hamilton cycles, or closed trails that minimize the number of
duplicate visits to a vertex is important. To illustrate, consider the following
two problems, which are representative for a wide range of applications.

Transportation problems: Consider scheduling a service that needs to pick
up people at n different locations. The problem is to find the most effi-
cient route (e.g., expressed in the smallest traveling distance) such that
all n locations are visited. This problem can be formulated in terms of
a road map with locations represented as vertices and roads between
pairs of locations as weighted edges. We are interested in finding a
minimal weighted Hamiltonian subgraph containing all vertices, pos-
sibly after expanding the graph to account for traversing an edge more
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than once. There are many variations on such transportation prob-
lems, of which a nice overview is provided by Applegate et al. [2007].
We return to this problem later in this chapter.

Drilling holes: There are many cases in which we need to drill holes in a
board, such as for electrical circuits. This requires the scheduling of a
drilling machine by which holes are drilled one by one. To minimize
the time it takes to drill all holes, we should minimize the distance
that the machine (or equivalently, the board) needs to make when
moving from hole to hole. We can model this problem as a complete
graph with the vertices forming the holes to be drilled and the weight
on each edge representing the geometric distance of the edges two
ends on the board. An optimal schedule corresponds to a minimal
weighted Hamilton cycle. To illustrate, Figure 4.5(a) shows an exam-
ple in which some 2400 points need to be drilled into a board. Fig-
ure 4.5(b) shows one possible schedule, whereas Figure 4.5(c) shows
an optimal solution in which the machine needs to “travel” half the
distance of the previous schedule. The example is discussed in more
detail by Grötschel and Padberg [1993].

These two examples are instances of what is known as the traveling
salesman problem. As mentioned, a serious issue is that there are no known
efficient solutions for determining whether a graph is Hamiltonian or not.
Worse, if we are interested in finding a minimal-weighted Hamilton cycle,
we will have a tough problem to solve as it will most likely require a lot
of computational resources. Considering the many applications related to
traveling salesman problems, it should come as no surprise that researchers
and practitioners have paid considerable efforts to finding efficient methods
for (near-)optimal solutions.

Fortunately, there are some reasonable starting points to finding good
solutions. For one, we have the following necessary condition for a graph
to be Hamiltonian: if we consider a subset S of the vertices of a graph and
subsequently remove those vertices, the graph should fall apart into at most
|S| components. More formally:

Theorem 4.4: If graph G is Hamiltonian, then for every proper nonempty subset
S ⊂ V(G), we have that ω(G− S) ≤ |S|.

Proof. Let C be a Hamilton cycle of G. If we consider any proper nonempty
subset S ⊂ V(G), then obviously, because every vertex is visited exactly
once, the number of components in C− S will be less or equal to |S|. How-
ever, because C contains all vertices of G, we also have that ω(G − S) ≤
ω(C− S), which completes the proof.
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(c)

Figure 4.5: An example of scheduling a drilling machine with (a) the holes that need
to be drilled, (b) a schedule, and (c) an optimal schedule. Taken with permission
from [Grötschel and Padberg, 1993].
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Note 4.5 (More information)
This is one of those examples where a simple diagram helps to understand
what is going on. Figure 4.6 shows a graph G and an arbitrary set S of ver-
tices from G. We have also sketched a Hamilton cycle C, which runs through
every vertex in S. Effectively, we split the cycle C into alternating segments
S1, S1, S2, S2, . . . , Sn, Sn, each segment Si consisting of a number of consecutive
vertices from S, and each segment Si consisting of consecutive vertices not in
S. In the “worst” situation, each subgraph induced by a segment Si is a com-
ponent of the graph G − S, i.e., G[Si] is disconnected from the other parts of
G − S. The maximal number of segments consisting of vertices outside S that
we can obtain, is when each segment Si consists of exactly 1 vertex. Hence, this
maximal is equal to |S|.

S

S
1

S
n

S
2

Figure 4.6: Segmentation of a Hamilton cycle for an arbitrary set S of vertices.

The previous theorem provides us with a necessary condition for a graph
to be Hamiltonian. In 1952, the mathematician Gabriel Dirac proved the fol-
lowing sufficient condition, which essentially states that a graph is Hamil-
tonian if each vertex is connected to at least half of the other vertices

Theorem 4.5 (Dirac): If G is a simple graph with n = |V(G)| vertices, n ≥ 3 and
each vertex v has degree δ(v) ≥ n/2, then G is Hamiltonian.

Proof. A relatively simple proof is by contradiction: assume the theorem is
false. Let G be a non-Hamiltonian graph with n ≥ 3 vertices and for which
δ(v) ≥ n/2 for each of its vertices. Moreover, assume that G has a maximal
number of edges, i.e., adding a single edge (while keeping G simple) would
make it Hamiltonian. Let u and w be two nonadjacent vertices. By construc-
tion of G we know that if we add an edge e = 〈u, w〉, the resulting graph G∗

would be Hamiltonian, and thus there exists a Hamilton path (u, w)-path P
in G with [u = v1, v2, . . . , vn = w], as shown in Figure 4.7(a).

Now consider the following two sets of vertices:

S = N(u) = {vi|〈u, vi〉 ∈ E(G)} and T = {vi|〈vi−1, w〉 ∈ E(G)}
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u w
vj j-1v

u w
vj j-1v

(a) (b)

Figure 4.7: (a) A Hamilton path in G, and (b) the constructed Hamilton cycle in G.

S consists of the neighbors of u, whereas T consists of the successors on
P of neighbors of w. Note that |S| ≥ n/2. Likewise, because P contains
all vertices in G, T contains as many elements as there are edges 〈vi−1, w〉,
which corresponds to δ(w). This means that |T| ≥ n/2. Furthermore, vertex
u is not contained in S (because it cannot be a neighbor of itself), nor is it
contained in T (which contains only successors of other vertices on P). In
other words, S, T ⊆ {v2, . . . , vn}, which, together with the fact that |S| +
|T| ≥ n, means that the two sets have at least one vertex in common. Let this
be vertex vj. We now have the situation that vj is a neighbor of u, and that
vj’s predecessor vj−1 is a neighbor of w. But in that case, we can construct
the Hamilton cycle [u = v1, vj, vj+1 . . . vn = w, vj−1, vj−2 . . . v1 = u], shown
in Figure 4.7(b). Note that this cycle does not contain edge 〈u, w〉. In other
words, we have just shown that G is Hamiltonian, which contradicts our
initial assumption. This means that there is no vertex vj ∈ S ∩ T and thus
|S∩ T| = 0. On the other hand, we know that u 6∈ S∪ T, so that |S∪ T| < n.
This now brings us to:

δ(u) + δ(w) = |S|+ |T| = |S ∪ T|+ |S ∩ T| < n

which cannot be true, meaning that we cannot assume the theorem is false.

Note 4.6 (Proof techniques)
It is interesting to note that the proof of Dirac’s theorem merely states that a
Hamilton cycle exists. It does not explain how to construct such a cycle. Again,
we see an important concept in mathematical proof techniques: the distinction
between an existential proof and a proof by construction. There are many cases
in which we know that a solution to a (graph theoretical) problem exists, but
that fruitless attempts have been made to find a specific solution. However,
for Dirac’s theorem, a (nontrivial) proof by construction does indeed exist. We
refer the interested reader to Dharwadker [2004]. Furthermore, note that we
have again made use of extremality in our proof, in this example by assuming
a maximal graph that was not Hamiltonian.
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Note 4.7 (More information)
Dirac’s theorem provides a sufficient condition for a graph to be Hamiltonian.
Several attempts have been made to provide a weaker sufficient condition, that
is, a condition that can be met by a larger number of graphs. When looking
carefully at the proof, we see that we never actually use the requirement that
δ(v) ≥ n/2, but rather that δ(u) + δ(v) ≥ n. Furthermore, strictly speaking we
never used the requirement that G needed to be a maximal non-Hamiltonian
graph. Instead, we only needed the property that the graph G + 〈u, v〉 was
Hamiltonian. This leads to the following theorem:

Theorem 4.6 (Ore): Let G be a simple graph with n vertices. If u and v are distinct,
nonadjacent vertices with δ(u) + δ(v) ≥ n, then G is Hamiltonian if and only if
G + 〈u, v〉 is Hamiltonian.

As you may imagine, the proof is very much like that of Dirac’s theorem. Using
this theorem, another sufficient condition was formulated, based on what is
known as the closure of a graph:

Definition 4.3: Consider a graph G with n vertices. The closure of G is obtained by
iteratively joining each nonadjacent pair of vertices u and v for which δ(u)+ δ(v) ≥ n,
until no such pairs exist anymore.

We can then simply prove the following theorem by applying Ore’s theorem
every time we add an edge in the construction of the closure of a graph:

Theorem 4.7 (Bondy-Chvátal): A simple graph G with n vertices is Hamiltonian if
and only if its closure is Hamiltonian.

Finding a Hamilton cycle

Let us now concentrate some more on actually finding Hamilton cycles (in
a simple graph). As we’ve mentioned before, determining whether a graph
is Hamiltonian is a notoriously difficult problem in the sense that there is
no known computationally efficient algorithm. In essence, this means that
we can follow only a trial-and-error approach when attempting to find a
Hamilton cycle, or simply doing it brute force by trying to find all cycles. To
illustrate the latter, we can try to systematically find all cycles by means of
an algorithm akin to the one for determining reachable vertices in a directed
graph.

We start with randomly selecting a vertex, say v1, and construct the set
of reachable vertices as R([v1]) = N(v1), where [v1] stands for the sequence
consisting only of vertex v1. For each vertex u ∈ R([v1]) we then construct
the set R([v1, u]) = N(u)\{v1}. In other words, R([v1, u]) consists of all
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Figure 4.8: (a) A simple graph and (b) all paths originating in vertex 1.

neighbors of u reachable after traversing the path [v1, u], but excluding v1.
Similarly, for any set R([v1, v2]) and vertex u ∈ R([v1, v2]), we can construct
the set R([v1, v2, u]) consisting of the neighbors of u, excluding v1 and v2

1.
In general, we have

R([v1, v2, . . . , vk]) = N(vk)\{v1, . . . , vk−1}

To illustrate, consider the simple graph in Figure 4.8 and the exploration
of all paths originating in vertex 1. In this example, R([1, 3]) = N(3)\{1},
which is equal to the set {2, 4}. Likewise, R([1, 2, 4]) = {3, 5}. The vertices
in Figure 4.8(b) that are colored white are adjacent to vertex 1, meaning that
we can complete a Hamilton cycle. One such cycle is [1, 3, 2, 4, 5, 1].

The whole idea is that we continue constructing a set R([v1, . . . , vk])
until it becomes empty for some k. Of course, this will be the case for any
k ≥ |V(G)| as we will have inspected all vertices by then. On the other
hand, it is possible that for k < |V(G)| a set already becomes empty, as is the

1Remember that V\W contains those elements of V that are not also in W. This means that
it also excludes the elements that are in W but not in V
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case with R([1, 2, 4, 3]) and R([1, 2, 4, 5]) in Figure 4.8. When a set becomes
empty, we consider only the ones with k = |V(G)| and check whether vn ∈
N(v1). If so, we will have discovered a Hamilton cycle.

Exhaustively enumerating all Hamilton cycles can work only for small
graphs. When graphs grow even beyond something like 10 or 15 vertices,
other approaches are needed. A relatively simple one that fits into a trial-
and-error approach is the following, due to Posa [1976] and described in
detail by Vandegriend [1998]. This algorithm makes use of what is known
as a rotational transformation, which is sketched in Figure 4.9. The idea is
that once we have a path [v1, v2, . . . , vj−1, vj, . . . , vk−1, vk] and a “shortcut”
by means of an edge 〈v1, vj〉 that we consider exploring an alternative path
[vj−1, . . . , v2, v1, vj, . . . , vk−1, vk].

v
1

v
2

v
j-1

v
j

v
k-1

v
k

(a)

v
1

v
2

v
j-1

v
j

v
k-1

v
k

(b)

Figure 4.9: Rotational transformation by which the original path (a) is transformed
to another one (b) after finding the edge 〈v1, vj〉.

Algorithm 4.3 (Posa): Consider a graph G and let u ∈ V(G) be a randomly selected
vertex. This vertex forms the first vertex of a path P that is expanded as follows.
Let last(P) denote the last vertex of P. Note that initially, last(P) = u.

1. Randomly select a neighboring vertex v ∈ N(last(P)), such that (1) prefer-
ably, v does not lie on P, and (2) if v ∈ V(P), then v has not been previously
selected as neighbor of a last vertex before. If no such vertex exists, stop.

2. If v 6∈ V(P), set P ← P + 〈last(P), v〉, i.e., expand P with the edge e =
〈last(P), v〉2.

3. If v ∈ V(P) then apply a rotational transformation of P using 〈last(P), v〉,
leading to path P∗ with a new last vertex last(P∗). If last(P∗) has not yet
been the last vertex for paths of the current length, set P← P∗.

2Formally, this means considering the induced graph G[E(P) ∪ {e}]
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4. If in the possibly modified version of P we now have that V(P) = V(G),
check if 〈u, last(P)〉 ∈ E(G). If so, we have found a Hamilton cycle. Other-
wise, continue with step 1.

The working of this algorithm is best illustrated through an example. Con-
sider the graph G shown in Figure 4.10 and assume we have already con-
structed path P as also shown. This construction comes from simply apply-
ing the preference rule, by which we attempt to add new vertices until that
is no longer possible. We now have the path

P = [1, 2, 3, 4, 5, 6]

At that point, we can select only from vertices that already lie on P. Assume
we randomly selected vertex 4. We then apply a rotational transformation
using edge 〈6, 4〉, meaning that after visiting vertex 4 we continue with ver-
tex 6 from where we continue along the original path, but in reversed order.
This leads to

P′ = [1, 2, 3, 4, 6, 5]

from which we then should select vertex 7 resulting in path P′′ shown in Fig-
ure 4.10(c). Unfortunately, there is no edge 〈1, 7〉, so that we continue with
step 1 of Posa’s algorithm. Assume we select vertex 2. A rotational trans-
formation then yields that we continue with vertex 7 after visiting vertex 2,
to subsequently walk the (2, 7)-segment of P′′ but in the reversed direction,
yielding

P′′′ = [1, 2, 7, 5, 6, 4, 3]

Because 〈1, 3〉 ∈ E(G), we have just found a Hamilton cycle, completing the
algorithm.

Optimal Hamilton cycles

Finding a Hamilton cycle can already be a computationally hard problem;
finding the best Hamilton cycle is even more difficult. Best in this context
is defined on a weighted graph in which each edge e has a nonnegative
weight w(e). We are now seeking Hamilton cycles with minimal weight,
i.e., ∑e∈E(C) w(e) should be minimal among all Hamilton cycles.

Finding an optimal Hamilton cycle becomes much easier if we can as-
sume that a graph is complete. In many practical situations, this is actually
a reasonable assumption, as we will explain shortly. A simple approach to-
ward tackling this problem is to first construct a trivial Hamilton cycle, and
then to subsequently try to modify that cycle such that its total weight re-
duces. In the case of a weighted complete graph with vertices v1, v2, . . . , vn,
we can start with the Hamilton cycle C = [v1, v2, . . . , vn, v1]. This cycle
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Figure 4.10: Illustration of Posa’s algorithm starting from an initial path (a), and
applying rotational transformation after selecting vertex 4 (b), adding vertex 7 (c)
and selecting vertex 2 followed by a rotational transformation (d).

can be modified by deleting the edges 〈vi, vi+1〉 and 〈vj, vj+1〉 and replacing
them by edges 〈vi, vj〉 and 〈vi+1, vj+1〉, as shown in Figure 4.11. If

w(〈vi, vj〉) + w(〈vi+1, vj+1〉) < w(〈vi, vi+1〉) + w(〈vj, vj+1〉)

we will have found a better Hamilton cycle than C.

(a) (b)

Figure 4.11: Modifying a Hamilton cycle in a complete graph (a) to a possibly better
one (b).
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As said, assuming that we’re dealing with a complete graph is a reason-
able assumption in many practical cases, such as finding the optimal route
for a traveling salesman. In that case, we are considering n locations con-
nected in some geographical network. We are seeking a closed route such
that every location is visited exactly once. This situation can be modeled as a
weighted graph with n vertices, where two vertices are joined only if there
is a connection between the two in the real network. The corresponding
edge has a weight that reflects the real-world distance between its two end
points. We can also model the network through a complete graph in which
an edge has an extraordinary high weight whenever its two end points are
not connected in the real world. Clearly, an optimal Hamilton cycle will
never include such an edge, for which reason it can’t hurt to include it when
representing the geographical network as a graph.

Exact solutions for the traveling salesman problem have been found for
very large networks, including the Swedish road map (with over 24,000)
cities. Impressive is also the near-optimal solution for China, comprising
over 71,000 cities and provably to close as 0.0024% of the optimal3.

Note 4.8 (More information)
If the traveling salesman problem is so computationally difficult, how could
one ever know that a solution is the best one, or otherwise so close to the best
one? The trick is not to try to actually find the best solution, but to estimate
the length of the best solution. More specifically, we can try to compute what
is known as a lower bound: the lowest value that is known that no Hamilton
cycle in a given graph can ever reach. If we assume that the minimal weight of
an edge is equal to 1, then a trivial lower bound is also 1. In fact, for any simple,
connected graph with n vertices and minimal edge weight w, it should be clear
that no Hamilton cycle will have a weight less than n · w.

It is not hard to imagine that we can generally come to much better estima-
tions of a lower bounds, although these do require some mathematics that are
beyond the level of most undergraduate courses. For this reason, we shall not
discuss them any further. However, you may ask how you can actually prove
that a solution is optimal. The answer is quite simple: assume some approach
finds a Hamilton cycle and at the same time using completely different meth-
ods, we happen to know that a lower bound is equal to LW. In other words, we
have shown that for all Hamilton cycles C, we know that for weight w(C) of C
we have w(C) ≥ LW, then obviously, if we find a C for which w(C) = LW, that
cycle must be optimal. Note that this just tells us that only one solution has been
found.

Another issue is that in real networks links may not be symmetric: the

3See also http://www.tsp.gatech.edu/world/countries.html
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distance from A to B may be different than the one from B to A. For exam-
ple, many end users are connected to the Internet through what is known as
an ADSL subscription. Such a subscription is characterized by the fact that
data that is received by the end user is transmitted at a higher rate than data
that is sent by that user. In such situations, we need to model the network
as a weighted directed graph, and subsequently find an optimal directed
Hamilton cycle.

The question that comes to mind is how we can use techniques for find-
ing (optimal) Hamilton cycles in undirected graphs for the directed case.
The answer to this question lies in transforming weighted directed graphs
to an equivalent weighted undirected form. To this end, we proceed as fol-
lows. Consider a directed Hamiltonian graph D with n. We construct a
undirected Hamiltonian graph D̂ with 3n vertices by representing each ver-
tex v ∈ V(D) by the triplet (vin, v, vout), as shown in Figure 4.12.

v v

v
out

v
in

(a) (b)

Figure 4.12: Transforming (a) a directed Hamiltonian graph to (b) an equivalent
undirected graph.

In the case we are dealing with weights, the weight of an arc 〈−→u, v〉 is
represented by the same weight on the edge 〈uout, vin〉, whereas all other
edges have weight 0. We now have:

Theorem 4.8: A directed graph D is Hamiltonian if and only if its transformed
undirected version D̂ is Hamiltonian.

Proof. First assume that D is Hamiltonian and let C = [v1, v2, . . . , vn, v1] be
a Hamilton cycle. Clearly, the cycle

Ĉ = [v1, v1
out, v2

in, v2, v2
out, . . . , vn

in, vn, vn
out, v1

in, v1]

is a Hamilton cycle in D̂.
Conversely, consider a Hamilton cycle Ĉ in D̂. Obviously, for each ver-

tex vk ∈ V(D̂), Ĉ contains the edges 〈vk
in, vk〉 and 〈vk, vk

out〉, for otherwise
it would be impossible to have visited vertex vk. For this reason, Ĉ corre-
sponds to a unique directed Hamilton cycle C in D.
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In the case of the directed equivalent of the traveling salesman problem,
we need to assume that the corresponding weighted directed graph D is
strongly connected. In that case, when there is no direct connection from
location A to B (e.g., because we are dealing with one-way streets), we can
still be sure that in the transformed complete graph with 3n vertices, there
will be an (A, B)-path corresponding to a directed (A, B)-path in D.
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In the previous chapter we occasionally came across graphs lacking cycles.
Such graphs are also known as trees. Trees form a special type of graph and
are important to study if only for their common and widespread use in di-
verse fields of practice and science. In this chapter we shall take a closer look
at trees, starting with presenting various applications. We will then take a
look at some formal issues, after which we concentrate on the construction
of optimal trees that can be used span an entire graph, or for finding shortest
paths in a weighted directed or undirected graph.

5.1 Background

Before we delve into various details and formalities, let us first consider why
trees receive so much attention. There are different fields in which trees are
extensively applied. Below, we just mention two of the more salient ones.

Trees in transportation networks

A compelling example of the application of trees is in transportation net-
works. Typical examples of such networks include communication net-
works and traffic networks, but also networks related to logistics such as
those reflecting the transportation of goods. In many cases, we need to
solve the problem of minimizing transportation costs from a source to mul-
tiple destinations (or vice versa). In practice, this boils down to finding the
cheapest paths in a network. We already came across this problem when
we discussed Dijkstra’s algorithm in Chapter 3. In that case, finding the
cheapest paths involved building a tree rooted at a particular vertex u and
constructing all cheapest (v, u)-paths from other vertices v. We will return
to finding cheapest paths later in this chapter.

A variation of this problem is that of setting up a communication in-
frastructure between a collection of nodes but such that the total costs are
minimized. For example, the nodes could be towns, the infrastructure is a
railway network, and the costs between two nodes corresponds to the dis-
tance that needs to be covered. This example is also known as the connector
problem.

The connector problem has practical instances in communication net-
works. Consider the delivery of video streams over the Internet. A famous
project that aimed at efficiently providing the facilities for such a service
was the MBone [Eriksson, 1994; Macedonia and Brutzman, 1994], an abbre-
viation for Multicast Backbone. This network consisted of many so-called
MBone routers, which were just normal computers spread across the Inter-
net. Important was the fact that two such routers would maintain a perma-
nent connection that could be used for streaming audio and video packets.
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(a)

(b)

Figure 5.1: (a) A map of the MBone overlay network as of July 1993, and (b) a
spanning tree of that network.
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In graph terminology, the routers formed the vertices, whereas the connec-
tions would form edges. The result is what is known as an overlay network,
a concept we shall also come across when discussing peer-to-peer networks
in Chapter 8.

To give an idea, Figure 5.1(a) shows a map of the MBone network as
of July 1993. At that point, there where approximately 400 MBone routers
maintaining the connections as shown. It is worth mentioning that we are
already dealing with a network that has only a few cycles. Figure 5.1(b)
shows a spanning tree of the MBone, that is, an acyclic connected subgraph
of the MBone with the same set of vertices. How we can compute such a tree
is discussed below. With a spanning tree in place, there is no further need
to set up routes. In the case of the MBone, nodes could join or leave groups,
with each group essentially representing those nodes that were interested
in the same video stream. Members of the same group were subsequently
connected to each other by means of a spanning tree. Note that in this case,
a spanning tree needed to reach out only to the nodes in the same group,
and not necessarily to all nodes comprising the MBone.

Trees as data structures

Trees are also used extensively to organize data in computer systems. In
particular, they appear as so-called rooted trees, which is a tree with a single
vertex designated as the root. To given an example of how trees can be used
to represent data, consider the following well-known arithmetic expression
describing one solution (if it exists) of the quadratic equation ax2 + bx + c:

x =
−b +

√
b2 − 4ac

2a

Computers need to process such expressions, to which end they first need
to be stored. This can be done conveniently in the form of the rooted tree
shown in Figure 5.2. The tree contains two types of nodes. The leaf nodes,
which are the ones having degree 1 forming the “lowest level” nodes, con-
tain the variables or constants. In our example, we have one variable, namely
x, and three constants, a, b, and c. The other, intermediate nodes, represent
operations.

The link between the original expression and the tree may be better un-
derstood if we rewrite the expression as

x = (−b + sqrt(b ∗ b− 4 ∗ (a ∗ c)))/(2 ∗ a)

where we now use the function sqrt(y) as an equivalent notation for
√

y.
Note how each operator has either one or two descendants, depending on
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Figure 5.2: The representation of an arithmetic expression as a tree.

whether we are dealing with a unary operator (which operates on one vari-
able or constant), or a binary operator (which takes two arguments).

Note 5.1 (More information)
In fact, we can replace each of the other operations with functions like sqrt as
follows:

operation function type
= eq binary
+ sum binary
− min binary
∗ mul binary
/ div binary
− neg unary
√ sqrt unary

As said, we make a distinction between binary and unary operations, where it
should be noted that the operation “−” is used in two different forms. Note
also that sqrt is indeed a unary operation. With these functions, we can rewrite
our original expression as:

eq(x,div(add(neg(b),sqrt(min(mul(b,b),mul(4,mul(a,b))))),mul(2,a)))

What has happened in comparison to the original expression, is that we have
switched from what is known as an infix notation to a prefix notation. In the
former, operators are placed between variables and constants, whereas with the
latter they are placed in front of them. To a computer it makes no difference.
The only thing that does matter is the organization of the rooted tree as given
in Figure 5.2, as this tree is an unambiguous representation of the expression.
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The common terminology for rooted trees that are used for data struc-
tures is to say that every node has one or more descendants. Likewise, each
node except the root node is said to have a parent. Note also that each node
u having k descendants is the root of k subtrees, each subtree in turn rooted
by a respective descendant of u. A special case is a binary tree in which
there are exactly two descendants for each intermediate node.

Binary trees come in handy when we need to quickly look up elements
in a finite ordered set. An ordered set S = {x1, x2, . . . , xn}, has the property
that xi < xj if i < j. As an example, any finite subset of natural numbers
forms an ordered set. Consider the set

S = {3, 6, 8, 12, 15, 20, 21, 27, 32, 33, 34, 45, 49, 51, 56, 60, 61}.

This set consists of 17 elements. To represent it as a binary tree, each element
will be represented by a node. We demand for each node x that all elements
in the left subtree represent values that are less than x, and all elements in
the right subtree have larger values. Leaf nodes store no value; they are
simply added for convenience as we discuss next.

Figure 5.3 shows the representation of our set S as a binary tree. Now
suppose that we wish to look up the element x = 16, which is not contained
in S. In this case, we start at the root node, which has value 27, continue in
its left subtree reaching 12. If x = 16 is contained in S, it must be stored in
the right subtree, which brings us to node 20, and from there on to 15, where
we can stop the traversal, now knowing that 16 is not in S.

27

4912

20 33

32 34

45

56

51 61

60

6

3 8 15 21

Figure 5.3: The representation of a set of natural numbers as a binary tree.

Now compare this lookup operation with the situation that we had rep-
resented S as a list. In that case, we would start from the first element and
subsequently move through the list until reaching the first element larger
than 16. On average, a lookup operation would require inspecting |S|/2 el-
ements if S had been represented as a list. In the case of using binary trees,
one can show that the number of operations are approximately log2(|S|),
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which is considerably less as S becomes larger. Further details on how to
use trees for representing data in computers can be found in [Goodrich and
Tamassia, 2002].

5.2 Fundamentals

Before discussing various tree-related algorithms, let’s first consider a few
characteristic features of trees. We start with the following observation:

Theorem 5.1: For any connected (simple) graph G with n vertices and m edges,
n ≤ m + 1.

Proof. The proof proceeds by induction on the number of edges m. Clearly,
if m = 1, we necessarily have n = 2 so that the theorem is true. Now assume
the theorem is true for all graphs with fewer than k edges and consider a
graph G with exactly k edges and n vertices.

Suppose that G contains a cycle C. In that case, choose an arbitrary edge
e ∈ E(C) and construct the induced subgraph G∗ = G − e. Because e was
lying on the cycle C, G∗ will still be connected, meaning that n = |V(G∗)| ≤
|E(G∗)| + 1 = (k − 1) + 1 = k. But in that case, we certainly have that
n ≤ k + 1.

If G does not contain a cycle, find a longest path P in G. Let u and w
be the end points of P. Note that because G is smple, the degree of each
these nodes must be 1, for otherwise P could not have been a longest path.
Now consider the induced subgraph G∗ = G− u. Clearly, G∗ is connected
and we have |V(G∗)| = n − 1 and E(G∗) = k − 1. By induction, we thus
also have that n− 1 ≤ (k− 1) + 1 = k, and thus n ≤ k + 1, completing our
proof.

Note 5.2 (Proof techniques)
Again, we have encountered a proof by induction. Note that the approach we
have taken is common to many such proofs. After having proven that the theo-
rem holds for an initial, generally almost trivial case, we proceed with assuming
that the theorem holds up until and including the case that m = k. We then con-
sider a situation with k + 1 edges. In our attempt to prove the theorem, we try
to reduce the new graph to one with at least one edge less, knowing that in that
case we can assume the theorem holds. This brings us to a new starting situa-
tion from where on we need to show that the theorem also holds in the original
situation with k + 1 edges.

Furthermore, note also that we have combined a proof by induction with
extremality by looking at a longest path P, from which we then remove an edge
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“at the extreme.” As we stated before, it is important to fully understand these
proofs, as they enforce you to understand details and techniques that are com-
mon to many graph-theoretical problems.

Note that, because the theorem holds for simple graphs, it certainly holds
for nonsimple graphs as well. It should now come as no real surprise that
trees obey the following property:

Theorem 5.2: For any tree T with n vertices and m edges, n = m + 1.

Note that we already proved this theorem in Chapter 2 (Lemma 2.1 on
page 51). We leave it as an exercise to the reader to provide an alterna-
tive proof, based on the proof of Theorem 5.1. Interestingly, the implication
formulated in the previous proof also holds in the opposite direction:

Theorem 5.3: A connected graph G with n vertices and m edges for which n =
m + 1, is a tree.

Proof. We prove the theorem by contradiction. To this end, assume G is not
a tree, i.e., it contains a cycle C. Let edge e ∈ E(C). Obviously, the induced
subgraph G − e is still connected, but with one edge less than G. From
Theorem 5.1 we know that |V(G− e)| ≤ |E(G− e)|+ 1. With |V(G− e)| = n
and |E(G− e)| = m− 1, we thus have that n ≤ (m− 1) + 1 = m. However,
we assumed that n = m + 1, which contradicts that n ≤ m. Hence, our
initial assumption, namely that G is not a tree, was false.

Let us proceed with another important characterization of trees:

Theorem 5.4: A graph G is a tree if and only if there exists exactly one path between
every two vertices u and v.

Proof. Recall that the phrase “if and only if” means that we need to prove
two things: (1) If G is a tree then there exists a unique path between every
two vertices and (2) if there exists a unique path between every two vertices,
then G is tree.

(1) Let G be a tree and let u and v be two distinct vertices. Because G
is connected, there exists a (u, v)-path P. Assume there is another,
distinct (u, v)-path Q. Let x be the last vertex on P that is also on Q
when traversing P starting from u. In other words, the next vertex
following x will be different for P and for Q, as shown in Figure 5.4.
Likewise, let y be the first vertex succeeding x that is common to both
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u x y v

Q

P

Figure 5.4: The construction of a cycle based on two distinct (u, v)-paths.

P and Q again. We have now identified a cycle in G, contradicting that
G was a tree.

(2) Now assume that G is not a tree. Note that because there is a path be-
tween every two vertices, G is connected. If G is not a tree, there must
be a cycle C = [v1, v2, . . . , vn = v1]. Clearly, for every two distinct
vertices vi and vj (i < j) on C we have also have two distinct (vi, vj)-
paths: P1 = [vi, vi+1, . . . , vj−1, vj] and P2 = [vi, vi−1, . . . , v2, v1 =
vn, vn−1, . . . , vj+1, vj], which contradicts the uniqueness of paths.

Before we provide another characterization of trees, we prove the following,
intuitively simple theorem:

Theorem 5.5: An edge e of a graph G is a cut edge if and only if e is not part of any
cycle of G.

Proof. Again, we need to prove two things: (1) If e is not part of any cycle,
then e is a cut edge, and (2) if e is a cut edge, it cannot be part of any cycle of
G.

(1) By contradiction: assume that e = 〈u, v〉 is not a cut edge (and not part
of any cycle). If e is not a cut edge, then u and v must still be in the
same component of G − e. This implies that there is a (u, v)-path P
in G− e connecting u and v. However, this also means that P + e is a
cycle in G, which violates our assumption.

(2) Again, by contradiction: let e = 〈u, v〉 be a cut edge of G and let x and
y be two vertices in different components of G − e. Because there is
an (x, y)-path P in G connecting x and y, we necessarily have that e
is part of P. Assume that u precedes v when traversing P from x to
y. Let P1 be the (x, u)-path part of P and P2 the (v, y)-path that is part
of P. If e were part of a cycle C, then u and v would be connected in
G − e through the path C − e. Let u∗ be the first vertex common to
P1 and C − e when traversing P1 from x. Likewise, let v∗ be the first

vertex common to P2 and C− e when traversing P2 from y. Let a
Q−→ b

denote that part of path Q that connects vertex a to b. Clearly, the path
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x
P1−→ u∗ C−e−−→ v∗

P2−→ y connects x and y in G− e, contradicting that e
was a cut edge. Hence, e cannot be part of any cycle.

Note 5.3 (Study tip)
For this proof, it is helpful to draw a diagram for case (2). We deliberately leave
this is an exercise, anticipating that you will gain more insight in the construc-
tion of the proof.

With this result, we can now easily prove the following characterization:

Theorem 5.6: A connected graph G is a tree if and only if every edge is a cut edge.

Proof. Again we need to prove two things: (1) If G is a tree then every edge
is a cut edge, and (2) if every edge is a cut edge, then G is a tree.

(1) Let G be a tree and e an edge of G. Because G contains no cycles, e is
also not contained in any cycle, meaning that it must be a cut edge.

(2) Assume G contains a cycle C. However, we now know that none of
the edges of C can be a cut edge, which means that not every edge in
G is a cut edge, contradicting our starting-point.

To summarize, we have described the following equivalent statements (1–5)
for a graph G with n vertices and m edges:

1. G is a tree, that is, it is connected and acyclic.

2. G is connected with n = m + 1.

3. G is acyclic with n = m + 1.

4. There exists a unique path between every two vertices.

5. G is connected and every edge is a cut edge.

6. G does not contain a cycle and adding a single edge creates a unique
one in G.

We leave the proof of the last statement as an exercise to the reader. These
theorems together provide a handful of characterizations of trees which
will show to be useful when determining properties of various networks.
In what follows, we shall concentrate on constructing specific trees as sub-
graphs of networks.
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5.3 Spanning trees

As we’ve mentioned, a spanning tree of a connected graph G is an acyclic
connected subgraph of G containing all of G’s vertices. It is not difficult to
see that every connected graph G has a spanning tree. Let T be a spanning
subgraph of G with a minimal number of edges. Clearly, every edge e in
T is a cut edge of T, for otherwise T would not be minimal. Hence, from
Theorem 5.6 we know that T is necessarily a tree.

More interesting than just noticing that a connected graph G has a span-
ning tree, is finding a minimal spanning tree in a weighted connected graph
G. In other words, our goal is to find a spanning tree T with minimal
weight among all spanning trees of G. Recall that the weight of a sub-
graph H is simply defined as the total sum of the weights of H’s edges:
w(H) = ∑e∈E(H) w(e). A famous algorithm that efficiently constructs such
a tree was designed by Kruskal [1956].

Note 5.4 (More information)
By the way, Kruskal was not the first to have devised a solution to the minimal
spanning tree problem, which is generally attributed to the Czech mathemati-
cian Otakar Boru°vka back in 1926, even before graph theory was “invented.” It
is uncertain whether there was already a solution as early as 1909. See also Gra-
ham and Hell [1985].

Algorithm 5.1 (Kruskal): Consider a weighted graph G where each edge e has been
assigned a real-valued weight w(e) ∈ R. Choose an edge e1 with minimal weight.

1. Suppose that edges Ek = {e1, e2, . . . , ek} have been chosen so far. Choose
a next edge ek+1 from E(G)\Ek such that the following two conditions are
met:

(1) The induced subgraph Gk+1 = G[{e1, e2, . . . , ek, ek+1}] is acyclic (note
that we are not demanding that Gk+1 is also connected).

(2) The weight w(ek+1) is minimal, i.e., for all e ∈ E(G)\Ek, we know
that w(e) ≥ w(ek+1).

2. Stop when there is no more edge to select in the previous step.

To get an impression how Kruskal’s algorithm works, Figure 5.5 shows
a weighted complete graph on eight vertices. The edges have been assigned
random weights. If we sort the edges by weight, we can see more clearly
how the algorithm works, as expressed in Figure 5.6. The resulting tree has
a total weight of 190.
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Figure 5.5: Applying Kruskal’s algorithm to finding a minimal spanning tree.

117



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Edge Weight Comment
〈3, 4〉 1 Selection 1: added
〈1, 5〉 5 Selection 2: added
〈1, 4〉 13 Selection 3: added
〈3, 7〉 23 Selection 4: added
〈7, 8〉 26 Selection 5: added
〈1, 7〉 38 Cannot add: creates a cycle [1, 7, 3, 4, 1]
〈5, 7〉 46 Cannot add: creates a cycle [1, 5, 7, 3, 4, 1]
〈2, 6〉 50 Selection 6: added
〈5, 8〉 65 Cannot add: creates a cycle [1, 5, 8, 7, 3, 4, 1]
〈6, 8〉 72 Selection 7: added, completing the tree

Figure 5.6: The evaluation of Kruskal’s algorithm on the graph from Figure 5.5.

From this table we can also see that the algorithm is relatively efficient:
we simply need to sort all edges by their weight and subsequently inspect
each edge starting from the one with the lowest weight. Of course, things
get somewhat more complicated when cycles need to be detected, yet even
then no big issues arise. For example, when inspecting an edge e = 〈u, v〉,
we need merely check whether e is joining two vertices that are already in
the same component, for in that case there would be a (u, v)-path P, thus
leading to the cycle P + e. If the two end points are not in the same com-
ponent, we can safely add e. Identifying the components in a graph is rel-
atively easy and is left as an exercise. This also means that we can easily
check whether e connects two different components, which, together with
the fact that it has minimal weight of the remaining edges, is enough to add
it to the subgraph constructed so far.

What remains is to show that Kruskal’s algorithm is correct in the sense
that it indeed provides us with an optimal spanning tree. We formulate this
as the following theorem (see also Bondy and Murty [1976]):

Theorem 5.7: Consider a weighted graph G with n vertices. Any spanning tree
TKruskal of G constructed by Kruskal’s algorithm has minimal weight.

Proof. This is typically a theorem that we should prove by contradiction. To
this end, consider a spanning tree T 6= TKruskal . Let ι(T) denote the small-
est index i such that when adding edges to TKruskal according to Kruskal’s
algorithm, edge ei 6∈ E(T). Now assume that TKruskal is not optimal and
let T be a spanning tree with maximal ι(T). In other words, for any other
spanning tree T′ 6= TKruskal , we have that T contains at least as many edges
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from TKruskal as T′. We will now construct an optimal spanning tree T̂ for
which ι(T̂) > ι(T), thus contradicting our choice of T and our assumption
that TKruskal is not optimal.

Suppose that ι(T) = k, meaning that all edges e1, e2, . . . , ek−1 are both
edges in T as well as in TKruskal . It can be easily seen that the graph T + ek
contains a unique cycle C. Let ê be an edge of C such that ê 6∈ E(TKruskal),
but ê ∈ E(T). Because ê lies on C, it cannot be a cut edge of T + ek. This also
means that T̂ = (T + ek) − ê is also a connected subgraph of G, and thus
also a spanning tree. Note that the total weight w(T̂) of T̂ is equal to

w(T̂) = w(T) + w(ek)− w(ê)

An important observation is that edge ek was chosen to be one with minimal
weight that kept the constructed subgraph up to that point acyclic. Clearly,
the graph induced by edges e1, e2, . . . , ek−1, ê is also acyclic, so that we must
conclude that w(ê) ≥ w(ek), and hence, w(T̂) ≤ w(T). This can only mean
that T̂ is also optimal. However, because ek ∈ E(T̂), we know that ι(T̂) >
ι(T), which contradicts our choice of T, namely as the tree with the largest
value for ι.

5.4 Routing in communication networks

Trees play a prominent role in communication networks, whose main job
is ensuring that messages are sent from their source to their intended des-
tination(s), also referred to as message routing. How message routing is
accomplished is laid down in a routing protocol: a collection of specifica-
tions describing exactly what to do when a node in a network receives a
message from source A that is destined for node B. In general, a node in a
communication network can be viewed as consisting of several interfaces,
where each interface connects that node to exactly one other node in the net-
work. In this way, we can represent a communication network as a graph
with nodes as vertices and links between two nodes as edges. An interface
is actually the end point of a link, and its representation coincides with the
vertex representing the node to which that link is attached.

A node usually maintains a routing table. Each row in this table speci-
fies to which interface a message should be forwarded, given its source and
destination, and optionally also the interface through which it arrived. An
important function of a routing protocol is constructing these tables. This
is exactly what we established when discussing Dijkstra’s shortest path al-
gorithm in Section 3.2: each node maintained exact information on the next
closest node to which a message should be routed, including how far a mes-
sage would still need to travel.
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Crucial for routing is that messages are not endlessly forwarded. Techni-
cally, this means that for every destination u messages should follow paths
in a spanning tree that is said to be rooted at u, hence called a rooted tree. In
particular, and analogous to what we also mentioned in Section 3.2, rooted
in this case means that we are interested only in (v, u)-paths, where v indi-
cates the source node. With u being the destination node, such a rooted tree
is also called a sink tree for u.

Dijkstra’s algorithm

The issue for routing protocols is to construct these sink trees, one for ev-
ery node in the network. A famous one is Dijkstra’s algorithm, which we
already discussed in Chapter 3. There, we illustrated how the algorithm
works for undirected graphs. It is not difficult to see that the algorithm also
works for directed graphs, and, in fact, that it can be easily formulated to
construct sink trees. The only restriction we demand is that the weight as-
sociated with an arc is nonnegative. Dijkstra’s solution for constructing op-
timal routes is so important that it is worthwhile also considering its coun-
terpart for directed graphs. For example, it is widely deployed in communi-
cation networks where it is known as a link-state routing protocol (see, for
example, Moy [1995]). The following description of the algorithm is nearly
identical to the one given in Chapter 3, except that we now construct paths
to the root vertex u.

Algorithm 5.2 (Dijkstra, sink tree construction): Consider a directed, weighted graph
D where weights are nonnegative, and a vertex u ∈ V(D). We introduce the
following sets and labels:

• Let St(u) be the set of vertices from which a shortest path to vertex u has been
found after step t.

• Each vertex v is assigned a label L(v) def
=
(

L1(v), L2(v)
)
, in which L1(v) is

the vertex succeeding v in the shortest (v, u)-path found so far, and L2(v)
the total weight of that path.

• Let Rt(u) def
= St(u) ∪v∈St(u) Nin(v), with Nin(v) denoting the set of in-

neighbors of v. In other words, Rt(u) consists of all vertices in St(u) and
the vertices from where St(u) can be reached through an arc.

1. Initialize t← 0 and S0(u)← {u}. Furthermore, for all v ∈ V(G):

L(v)←
{
(u, 0) if v = u
(−, ∞) otherwise

120



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

2. For each vertex y ∈ Rt(u)\St(u), consider the vertices N′out(y) that are out-
neighbors of y that lie in St(u), i.e., N′out(y)

def
= Nout(y)∩ St(u). Select x ∈

N′out(y) for which L2(x) + w(〈−→y, x〉) is minimal. Set L(y) ←
(
x, L2(x) +

w(e)
)
.

3. Let z ∈ Rt(u)\St(u) for which L2(z) is minimal. Set St+1(u) ← St(u) ∪
{z}. If St+1(u) = V(G), stop. Otherwise, t← t + 1, compute Rt(u) again
and repeat the previous step.

To illustrate this algorithm, let us reconsider the graph from Figure 3.4, but
now with its edges be directed, as shown in Figure 5.7. What we see is
that we can apply the same steps, but, of course, because the graph is now
directed, we obtain a different (directed) tree rooted at vertex v0. Again, we
can formulate this version of Dijkstra’s algorithm in pseudo-code, which is
left to the reader.

Note 5.5 (Mathematical language)
Despite our deliberate use of formal notations, by now it should be clear from
the mathematical description what the principle behind Dijkstra’s algorithm is.
Every time we have completed the set S(u), we attempt to expand it by adding
a vertex from the next ring of vertices from where S(u) can be reached, and
subsequently add the vertex closest to u, as shown in Figure 5.8.

u

S

R

Figure 5.8: An illustration of the relation between S and R.

To properly understand algorithms such as the one from Dijkstra, it is important
to develop these type of high-level insights. Drawings generally help a lot and
force you to translate the mathematical concepts into simpler principles, in turn,
assisting in understanding those concepts.

Although Dijkstra’s algorithm is relatively simple, it is not obvious that
it is also correct. We follow Goodrich and Tamassia [2002] in proving its
correctness.
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Figure 5.7: Applying Dijkstra’s algorithm to construct a sink tree in a weighted
directed graph.

Theorem 5.8: Given a weighted directed graph D. When applying Dijkstra’s algo-
rithm to a vertex u, each time a vertex z is added to the set St(u), L2(z) corresponds
to the length of a shortest (z, u)-path.

Proof. By contradiction. Let d(w, u) denote the total weight of an optimal
(w, u)-path. Let z be the first vertex that was added to an St(u) for which
L2(z) > d(z, u). In other words, up until and including step t we have that
for all vertices v ∈ St(u), L2(v) = d(v, u), but St+1(u) contains, for the first
time a vertex z for which L2(z) > d(z, u). Because z was selected (after
t steps), we know that L2(z) < ∞ and thus that there is a (z, u)-path. In
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particular, there must be a shortest (z, u)-path, say P. Let y be the last vertex
on that path (from z to u) that is not in St(u), and x its successor (and thus
in St(u)). By choice of z, we know that L2(x) = d(x, u), i.e., L2(x) is equal
to the total weight of an optimal (x, u)-path.

When x was selected (say, at step t′), we also evaluated y and possi-
bly adjusted L2(y) so that the value of L2(y) is in any case at most L2(x) +
w(〈−→y, x〉), i.e., L2(y) ≤ L2(x) + w(〈−→y, x〉). On the other hand, because y is on
the shortest (z, u)-path P, x is the successor of y on P, and L2(x) = d(x, u),
we necessarily have that L2(x) +w(〈−→y, x〉) = d(x, u) +w(〈−→y, x〉) must corre-
spond to the length of a shortest (y, u) path, i.e. L2(x) + w(〈−→y, x〉) = d(y, u).
However, we have to realize that y was not selected to be included in an
St(u), which can only mean that L2(z) ≤ L2(y). Because y is on a shortest
(z, u)-path, we also have

d(z, y) + d(y, u) = d(z, u)

and because d(y, u) ≥ 0, we now have that:

1. L2(z) ≤ L2(y)

2. L2(y) = d(y, u)

3. d(y, u) ≤ d(y, u) + d(z, y)

4. d(y, u) + d(z, y) = d(z, u)

and thus that L2(z) ≤ d(z, u), contradicting our choice of z. Hence, the
assumption that there exists a z that was added to St(u) with L2(z) > d(z, u)
is false, completing our proof.

The Bellman-Ford algorithm

An important observation is that in order to execute Dijkstra’s algorithm, we
need to know exactly what the graph looks like. In other words, we need to
know which vertices are adjacent to each other and what the weight of their
respective connecting edges are. We say that we need to know the topol-
ogy of the graph. In practice, when a node u in a communication network
receives a message intended for node v, it needs to forward that message
along the optimal sink tree for v. The same holds for any other incoming
message regardless its destination, As a consequence, node u will have to
precompute the optimal sink tree for each node in the network. In real net-
works, we therefore see that the topology of a network is first spread to all
nodes in that network (and, of course, on a regular basis because networks
change).

Given this situation, one can ask whether it is possible to compute op-
timal sink trees without having to know the topology in advance. In fact, it
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is actually not necessary that a node needs to know a complete sink tree, as
long as it knows to which next node it should forward an incoming message
and that this forwarding is done along an optimal sink tree. A solution to
this problem was provided by several people, but is generally known as the
Bellman-Ford algorithm. It was the basis for one of the first widely applied
routing protocols in the Internet, but for reasons we briefly discuss below, it
has been largely replaced by protocols based on Dijkstra’s algorithm.

The protocol can be completely described from the perspective of a node.
To this end, we proceed in rounds by letting each node vi compute the op-
timal path to other nodes based on the information that is available to vi in
that round. Let dt(i, j) denote the total weight of the optimal (vi, vj) path
that vertex vi has found after round t. We denote this total weight as the
routing cost of getting a message from vi to vj. Initially, we have

d0(i, j)←
{

0 if i = j
∞ otherwise

In other words, we let each node initially set the cost to itself to be zero, and
the cost to any other node as infinite. We now let vi adjust its value of dt

ij as
follows:

dt+1(i, j)← min
k∈N(vi)

{
w(vi, vk) + dt(k, j)

}
in which N(vi) is the collection of neighboring nodes of vi and w(vi, vk) the
weight of edge 〈vi, vk〉. Note that as soon as dt

ij becomes anything else than
infinite, vi will have discovered a path to vj. In particular, after the first
round, vi will discover a path to each of its respective neighbors, namely
the path consisting of the edge connecting vi to that neighbor. After two
rounds, optimal paths of length 2 will have been discovered, and so on.

In practice, the algorithm is implemented by letting nodes exchange in-
formation found in their respective routing tables. Consider the undirected
version of Figure 5.7. Each node (which is represented by a vertex of the
graph shown in Figure 5.7) will initially know only about itself and no other
node. After one round, the routing tables for each node will be as shown in
Figure 5.9. We use the notation (d, v) to indicate that a path of cost d has
been found, for which messages are to be forwarded to adjacent node v.

Now consider node v1, who, after one round, has discovered paths to v2
and v3. At a certain moment, node v2 and v3 will each pass their routing
table to v1. Assume that v3 was first. In that case, v1 learns that v3 has
discovered a path to node v0 at cost 1. Because v1 has a path to v3, it has now
discovered a path to v0 at cost 8, for which it need only forward messages
to its neighbor v3. However, as soon as v2 has passed its routing table to
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Destination
v0 v1 v2 v3 v4 v5 v6 v7

v0 : (0, v0) (3, v2) (1, v3) (6, v4)

v1 : (0, v1) (2, v2) (7, v3)

v2 : (3, v0) (2, v1) (0, v2) (1, v5)

v3 : (1, v0) (7, v1) (0, v3) (4, v6)

v4 : (6, v0) (0, v4) (5, v5) (3, v6)

v5 : (1, v2) (5, v4) (0, v5) (4, v7)

v6 : (4, v3) (3, v4) (0, v6) (2, v7)

v7 : (4, v5) (2, v6) (0, v7)

Figure 5.9: The routing tables for the nodes in the undirected version of Figure 5.7,
after one round of the Bellman-Ford algorithm.

v1, the latter will discover a better path to v0, namely one via v2 and at total
cost w(v1, v2) + d(v2, v0) = 2 + 3 = 5.

Completely analogous, v0 will eventually pass its routing table to v2,
in which case v2 will discover a path to v3 at cost w(v2, v3) + d(v0, v3) =
3 + 1 = 4. It can be readily verified that after the second round, the routing
tables will be as shown in Figure 5.10. Note that there are two different
paths of equal cost between nodes v3 and v4.

Destination
v0 v1 v2 v3 v4 v5 v6 v7

v0 : (0, v0) (5, v2) (3, v2) (1, v3) (6, v4) (4, v2) (5, v3)

v1 : (5, v2) (0, v1) (2, v2) (7, v3) (3, v2) (11, v3)

v2 : (3, v0) (2, v1) (0, v2) (4, v0) (6, v5) (1, v5) (5, v5)

v3 : (1, v0) (7, v1) (4, v0) (0, v3) (7, v0) (4, v6) (6, v6)

v4 : (6, v0) (6, v5) (7, v6) (0, v4) (5, v5) (3, v6) (5, v6)

v5 : (4, v2) (3, v2) (1, v2) (5, v4) (0, v5) (6, v7) (4, v7)

v6 : (5, v3) (11, v3) (4, v3) (3, v4) (6, v7) (0, v6) (2, v7)

v7 : (5, v5) (6, v6) (5, v6) (4, v5) (2, v6) (0, v7)

Figure 5.10: The routing tables for the nodes in the undirected version of Figure 5.7,
after two rounds of the Bellman-Ford algorithm.

Reconsider the routing table for node v1. Again, v2 will eventually pass
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its now updated table to v1, reporting a cost of d(v2, v3) = 4 of a path it
discovered to v3. As soon as v1 obtains this information, it will have found
a better path to v7 than the direct connection through edge 〈v1, v3〉, namely
via v2. The cost for this path are w(v1, v2) + d(v2, v3) = 2+ 4 = 6. Hence, v1
will adjust its routing table accordingly. Note that the only thing v1 knows,
is that messages for destination v3 should be routed via v2. In particular, v1
is unaware of the length of its newly discovered path to v3, i.e., the number
of edges of that path.

The Bellman-Ford algorithm is particularly attractive because it allows
each node to gradually discover optimal paths to the currently reachable
nodes in the network. It is important to realize that the algorithm is com-
pletely decentralized: all decisions that a node takes concerning optimal
routes is based entirely on local information, without the need to be com-
plete. In contrast, Dijkstra’s algorithm requires that the complete topology of
the network is first disseminated to each node before each can start comput-
ing optimal routes (i.e., sink trees). Nevertheless, the algorithm had some
serious drawbacks in practice, eventually making it less popular. Further
information on applying the protocol in practice (where it is generally re-
ferred to as a distance-vector routing protocol) can be found in [Malkin
and Steenstrup, 1995].

Note 5.6 (More information)
There is one particularly nasty problem inherent to the Bellman-Ford protocol.
Consider a network in which the nodes are organized as a straight line:

v1 v2 v3 v4 v5 v6

Assume that the distance between two adjacent nodes is always 1 (i.e.,
d(vi, vi+1) = 1). Eventually, the nodes will build the following routing tables:

Destination
v1 v2 v3 v4 v5 v6

v1 : (0, v1) (1, v1) (2, v1) (3, v1) (4, v1) (5, v1)

v2 : (1, v1) (0, v2) (1, v3) (2, v3) (3, v3) (4, v3)

v3 : (2, v2) (1, v2) (0, v3) (1, v4) (2, v4) (3, v4)

v4 : (3, v3) (2, v3) (1, v3) (0, v4) (1, v5) (2, v5)

v5 : (4, v4) (3, v4) (2, v4) (1, v4) (0, v5) (1, v6)

v6 : (5, v5) (4, v5) (3, v5) (2, v5) (1, v5) (0, v6)
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Now suppose that the link between node v1 and v2 breaks. In other words, v2
can no longer directly reach v1. As a consequence, node v2 will have to discover
an alternative route to v1, and “fortunately,” notices that v3 is advertising that it
has a path to v1 of routing cost 2. Of course, this advertised path is [v3, v2, v1],
but this information is withheld from v2. The only thing that v2 gets to know
from v3 is that the latter has discovered a path to v1 of cost 2. Node v2 will then
update its routing-table entry for getting to node v1 with (3, v2) and advertise
that it has discovered a path to v1 of cost 3.

The problem will now become clear: v3 had registered the entry (2, v2)
based on the initially advertised routing cost by v2 (which was 1), and its own
routing cost of getting to v2 (also 1). Now that v2 is advertising a routing cost
of 3, v3 will adjust its entry to (4, v2), and subsequently advertise a routing cost
of 4 to get to v1. As soon as this new routing-cost information reaches v2, it
will adjust its advertised cost from 3 to 5. This process will not stop as long as
the link between v1 and v2 remains defect. The result is known as the count-
to-infinity problem which turned out to have no easy fix. In practical settings,
the Bellman-Ford algorithm is used with a full advertisement of the path, al-
lowing a node to discover whether it is part of that path, avoiding the mistake
of choosing a path with a known broken link.

A note on algorithmic performance

Realizing that Dijkstra’s algorithm as well as the Bellman-Ford algorithm
lie at the heart of some of the most important routing algorithms in the In-
ternet, it is worthwhile seeing how efficient these algorithms actually are.
In particular, we can ask ourselves how long it will take to find a sink tree
as a function of the number of vertices. As it turns out, in most cases Di-
jkstra’s algorithm will outperform the Bellman-Ford solution. In particu-
lar, when graphs are large and have many edges, Dijkstra will generally be
more efficient. To illustrate, Figure 5.11 shows the time to compute a sink
tree as a function of the size of the graph (expressed in the number of ver-
tices). Figure 5.11(a) shows the results for a so-called grid graph: a graph
in which the vertices and edges are organized as in a two-dimensional grid.
Figure 5.11(b) shows the time needed to compute a sink tree in a complete
graph. Indeed, we can see that Bellman-Ford outperforms Dijkstra’s algo-
rithm for grid graphs, but not for complete graphs.

These results are not so surprising when taking a closer look at the num-
ber of algorithmic steps that we need to take for each algorithm. Let us first
consider Dijkstra’s algorithm. At each step t, we need to inspect all vertices
in Rt(u)\St(u), after which we expand St(u) with one vertex. If n denotes
the total set of vertices, then each step thus requires considering in the order
of n vertices, which we repeat n times. In other words, we can expect that
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Figure 5.11: The time needed to compute a sink tree in (a) a grid graph and (b) a
complete graph.

the computational time of Dijkstra’s algorithm is roughly proportional to
n2.

For the Bellman-Ford algorithm, we observe something different. At
each step, each vertex needs to inspect the information collected at each of
its neighbors. In total, the vertices needs to inspect roughly m other vertices,
where m is the total number of edges. The total number of steps we need to
perform is equal to the length of the longest shortest path and can be shown
to increase proportional to the number of vertices. Hence, the computa-
tional time of the Bellman-Ford algorithm is approximately proportional to
n ·m.

We stress that these are merely back-of-the-envelope calculations. Indeed,
when considering that the minimal number of edges that we need for a
graph of n vertices to be connected is equal to n− 1 (as we showed in Theo-
rem 5.1), we could equally argue that the Bellman-Ford algorithm will take
at least also in the order of n · n− 1 ≈ n2 time units to complete. More de-
tails need to be considered to arrive at more accurate calculations, but which
goes beyond the scope of this text. What our calculations do show, is that
the more edges a graph has, we may indeed expect that the Bellman-Ford
algorithm performs comparatively less than Dijkstra’s algorithm.

Note 5.7 (Mathematical language)
Above, we stated that we needed to consider in the order of n vertices. This can
be made mathematically precise using what is known as the big O notation,
which allows us to describe the behavior of a function f (x) for large values of
x. The basic idea is that we want to capture what can be called the dominating
components of a function. For example, the function f (x) = ax2 + bx + c is
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completely dominated by the term ax2 when x becomes very large. The other
terms eventually hardly play a role anymore, regardless how big the constants
b and c are. In fact, the form of f (x) is completely determined by the term x2.

Formally, we write f (x) ∼ O(g(x)) when there exists a constant M > 0
such that for all x > x0 we have that | f (x)| < M · |g(x)|. In other words, apart
from a constant factor M, function f (x) will always be bounded by function
g(x) after some value x0 as shown in Figure 5.12.

We can also provide a lower bound for a function f (x), in which case we
write f (x) ∼ Ω(g(x)) meaning that there exists a constant M′ such that for
some value x′0 we know that | f (x)| > M′ · |g(x)|. Note that f (x) ∼ Ω(g(x)) if
and only if g(x) ∼ O( f (x)). Finally, a function f (x) can eventually have exactly
the same form as another function g(x), or more precisely, there exist constants
M and M′ such that for all x > x0 we have that M′ · |g(x)| < | f (x)| < M · |g(x)|.
In this case, we write f (x) ∼ Θ(g(x)). More information on computational
complexity can be found in [Goodrich and Tamassia, 2002].

x

f(x)

M • g(x)

x0

Figure 5.12: Bounding the function f (x) by g(x).

There is no doubt that the Bellman-Ford algorithm is elegant: it is fully
decentralized, nodes need only publish their routing tables when an update
occurs, and in practice it is generally just as efficient as Dijkstra’s algorithm.
Nevertheless, the algorithm is often less popular than Dijkstra’s. One of its
major problems is that when edge weights change often, nodes need to con-
tinuously adjust their routing tables, and propagate those changes through-
out the network. If that propagation takes longer than the time between
changes, we obviously have a problem. In the case of the Bellman-Ford
algorithm, these problems can become so serious that constructing optimal
sink trees is no longer possible, and special measures are needed. As it turns
out, Dijkstra’s algorithm is less susceptible to these propagation issues. Both
type of algorithms continue to play a key role in the design and implemen-
tation of communication networks.
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As a side note, both algorithms are considered to be computationally
efficient, meaning that their running time is in the order of some polynomial
function such as, n2 or n3. In contrast, problems that require algorithms
with a computational effort that grows exponentially in the problem size
(which in our examples is expressed in terms of the size of a graph), are
called computationally inefficient. Unfortunately, many graph problems
fall into this class, such as finding Hamilton cycles, or determining whether
two graphs are isomorphic. A standard text that discusses these issues is
[Garey and Johnson, 1979]

130



CHAPTER 6

NETWORK ANALYSIS





PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Up to this point we have discussed some of the more elementary issues con-
cerning graphs. In the real world, we are often confronted with a network
and wish to examine some of its properties in order to get more insight in
what we’re actually dealing with. This is particularly true when dealing
with large networks that exhibit apparently random structures. In the fol-
lowing chapters we will have a closer look at many of these networks, but
before doing so, we take a look at some of the basic techniques that we can
use to analyze those structures.

Network analysis is an emerging field of research, often founded on the
use of various mathematical tools and methods (see, e.g., Brandes and Er-
lebach [2005]), and is also considered as a subarea of what is known as data
mining of graphs [Cook and Holder, 2007]. In the following, we consider
several metrics used in a myriad of sciences to analyze networks. We start
with focusing on vertex degrees, followed by taking a closer at so-called
distance statistics. An important concept that is used to characterize many
real-world networks is clustering, which is discussed next. After that, we
pay attention to the notion of centrality, which is particularly important for
social networks.

6.1 Vertex degrees

Perhaps one of the simplest starting points for network analysis is taking a
look at vertex degrees. As we know from Theorem 2.4, the minimal vertex
degree is an upper bound for the vertex and edge connectivity of a graph.
However, there are other properties to examine through vertex degrees. For
example, using degrees allows us to identify the key players in social net-
works: those nodes with a high vertex degree.

Also, degrees, and notably degree sequences can be used to derive infor-
mation on the structure of a network. For example, if most vertex degrees
are the same, we are dealing with a more or less regular network in which
vertices have equal roles. On the other hand, with very skewed degree
sequences, that is, sequences in which a few vertices have relatively high
degrees in comparison to others, these high-degree vertices play the role of
hubs, of which the removal may actually partition a connected network into
several components.

Finally, as we already discussed, if we are to test isomorphism between
two graphs, we can start with testing whether their respective degree se-
quences are the same. If they are not, then Theorem 2.3 tells us that they
cannot be isomorphic. In the following, we first take a look at degree distri-
butions, followed by a few words on degree correlations.
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Figure 6.1: Two different graphs GAcomplex and GBcomplex and their respective his-
tograms of vertex degrees.

Degree distribution

A degree sequence can often best be plotted by means of a histogram. In
that case, for a simple, connected graph having n vertices, we plot the val-
ues h(d) def

= |{v ∈ V(G)|δ(v) = d}|. In other words, h(d) is the number of
vertices having degree d. If for some value D we have that h(d) = 0 for all
d > D, we simply discard those h(d). Obviously, ∑n−1

d=0 h(d) = n. To illus-
trate, consider the graphs in Figure 6.1, which we will denote as GAcomplex
and GBcomplex, respectively. From the figure, we may suspect that they are
different (and, in fact, if we consider other embeddings this difference will
be more evident), but expressing this difference may be somewhat difficult.
However, when considering their respective degree distributions, we see
that we are indeed dealing with two very different graphs. To complete this
simple analysis, we note that both graphs have 100 vertices, with the graph
from Figure 6.1(a) having 300 edges, and the one from (b) having 317 edges.
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There are different ways to visualize degree distributions. Above we
used histograms. We can also consider the fraction of vertices that have a
certain degree, i.e., draw h(d)/n. This technique is actually used to ap-
proximate the probability P[δ(u) = d] that a vertex u has degree d. An-
other technique is to first order the vertices according to their degree, and
then plot the degree vertex. Effectively, we consider the degree sequence
[d1, d2, . . . , dn] of a graph and subsequently plot dk for each k. To illustrate,
Figure 6.2 shows this alternative way of displaying vertex degrees for our
two example graphs from Figure 6.1.
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(a) (b)

Figure 6.2: Visualizing the vertex degrees of GAcomplex and GBcomplex after ranking
the vertices according to their degree. The y-axis shows the vertex degree, the x-axis
the respective vertex rank.

When displaying vertex degrees, we sometimes also need to consider the
scaling of the axis. Consider the following example of a 10,000-node graph,
as shown in Figure 6.3 (which we discuss in more detail in Chapter 7). As
in our previous example, we rank the vertices according to their degree and
subsequently plot the vertex degree of each kth vertex. In Figure 6.3(a) we
have used a linear scale for both axes. Unfortunately, we see that most ver-
tices have the same, low degree, implying that it is difficult to see what is
going on.

In Figure 6.3(b) we have used logarithmic scales for both axes. In other
words, the displayed distance between two points on an axis is proportional
to the logarithm of the actual distance between those two points. To illus-
trate, the displayed distance between x = 10 and x = 100 is the same as
the one between x = 100 and x = 1000. The result is dramatic: we can
now easily imagine that a straight line through all the data points can be
drawn, implying that the vertex degree distribution follows some kind of
exponential function. We will return to these issues in Chapter 7. In gen-
eral, displaying the distribution of vertex degrees in many cases provides a
lot of information, and we shall make use of this technique quite often.
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Figure 6.3: Different representations of visualizing vertex degrees: (a) using linear
scales for the axes, and (b) using logarithmic scales.

Note 6.1 (More information)
In many cases, being able to display a vertex degree distribution allows us to
more adequately apply a technique known as curve fitting. This is a well-
known statistical technique by which we try to find a (continuous) function
f (x) through a set of data points, such that the total error we make is minimal.
To explain, consider the degree sequence [d1, d2, . . . , dn]. In this case, we have
n data points (k, dk). When finding a suitable curve through these data points,
we will be generally looking for a relatively simple function f (x), in turn im-
plying that we will not always have an exact fit for every data point. In other
words, for every value of k there will be a difference between f (k) and dk. In
practice, we then try to find a function that minimizes the so-called least square
error ε:

ε =
n

∑
k=1

(
dk − f (dk)

)2

Other error metrics are also possible. Most packages for data analysis or data
plotting have facilities on board for simple and often also advanced curve fit-
ting. We will not delve into any further details. More information on the tech-
nicalities can be found in [Judd et al., 2009].

Degree correlations

Besides just displaying vertex degrees, we are often interested to what ex-
tent vertices of the same or different degrees are also joined. For example,
in social networks high-degree vertices seem to generally be joined to each
other, whereas in many technological networks, high-degree vertices are
joined with low-degree ones [Newman, 2002]. The underlying phenomenon
that we are dealing with is that in real-world networks we often see that sim-
ilar nodes tend to link to each other, or, in contrast, that there is a tendency
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for dissimilar nodes to have links. The extent to which this phenomenon
occurs is known as assortative mixing. Similarity is defined by all kinds
of network-specific properties: the subject of Web pages, the preferences or
taste of people, the number of shared files in peer-to-peer computer net-
works, etc. These properties are normally not captured when modeling
real-world networks. At best, we can assign a type to a vertex and then
ask ourselves to what extent vertices of the same or different type are joined
(as is discussed by Newman [2003b]).

A much simpler approach is to consider only the vertex degree and to
measure the degree correlation between the respective degrees of two adja-
cent vertices. Informally, the correlation between two variables x and y tells
us to what extent we can expect that if we see a change in x, we will also
see a change in y. If the correlation is positive, then an increase in x should
show us also an increase in y. In the case of a negative correlation, an in-
crease in x will show a decrease in the value of y. It is important to realize
that we are dealing with observed changes. In other words, x and y are two
observable variables such as humidity and the growth of a plant in the case
of a biological system.

Formally, correlation is defined through what is known as a correlation
coefficient:

Definition 6.1: Let x and y be two stochastic variables, for which we have a series
of observation pairs (x1, y1), (x2, y2), . . . , (xn, yn). The correlation coefficient
r(x, y) between x and y is defined as:

r(x, y) def
=

1
n ∑n

i=1
(
(xi − x)(yi − y)

)√
1
n ∑n

i=1(xi − x)2 ·
√

1
n ∑n

i=1(yi − y)2

where x is the average over the xi’s: x def
=

1
n ∑n

i=1 xi, and likewise y def
=

1
n ∑n

i=1 yi.

Note that the expression for r(x, y) can be slightly simplified to

r(x, y) def
=

∑n
i=1
(
(xi − x)(yi − y)

)√
∑n

i=1(xi − x)2 ·
√

∑n
i=1(yi − y)2

Note 6.2 (Mathematical language)
If you have never seen formal definitions of correlations before, they can
be quite intimidating. For our purposes, it is merely important that you
have some intuition of where they come from. First, consider the expression
∑
(
(xi − x)(yi − y)

)
. Each term (xi − x) measures to what extent the observed

value xi deviates from the average observed values of x. If x and y are positively
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correlated, we would expect to see that each product (xi− x)(yi− y) would also
be positive (and certainly nonzero). In essence, the only thing that we are doing
is simply computing the average over all these products, for which reason we
divide the sum by the total number of observations, n.

So what are these terms in the denominator? As we just mentioned, (xi − x)
measures the deviation of xi from the average over all observations. In order
to truly compare such deviations, we need to normalize our measurements. In
other words, we need to make sure that the ranges of values that we are compar-
ing are more or less the same, otherwise we will be biasing our measurements
towards the variable with the largest ranges. One approach is to simply divide
our observations by the average deviation, that is, 1

n ∑(xi − x). However, for
reasons that are beyond the scope of this text, it is common practice to use a

different “average,” namely
√

1
n ∑(xi − x)2, which is known as the standard

deviation.
It should be noted that this explanation does not do just to the mathematical

statistics underlying the definition of the correlation coefficient. In fact, the defi-
nition should actually be fine-tuned. More information can be found in Mandel
[1984] or Judd et al. [2009].

Taking this formal definition of correlation as our basis, we can now de-
fine the correlation between vertex degrees. To this end, we make use of a
graph’s adjacency matrix A. Recall that for a simple graph G with vertex set
V(G) = {v1, v2, . . . , vn}, A[i, j] = 1 if there is an edge joining vertex vi and
vj, and otherwise A[i, j] = 0.

Definition 6.2: Let G be a simple graph with degree sequence d = [d1, d2, . . . , dn]
and adjacency matrix A. Let V(G) = {v1, v2, . . . , vn} be such that δ(vi) = di.
The degree correlation of G is defined as:

rdeg(G) def
=

∑n
i=1 ∑n

j=i+1
(
(di − d)(dj − d) ·A[i, j]

)
∑n

i=1(di − d)2

where d denotes the average vertex degree, i.e., 1
n ∑n

i=1 di.

The similarity between r(x, y) and rdeg(G) should be obvious. Except for
the use of the adjacency matrix, it is seen that the form of the respective
nominators is virtually the same, with d essentially replacing both x and
y in r(x, y). That the same holds for the denominator can be seen when
considering that√

1
n ∑(di − d)2 ·

√
1
n ∑(di − d)2 =

1
n ∑(di − d)2
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Note 6.3 (Mathematical language)
Note how we used the adjacency matrix A to elegantly sum up all possible
edges between two vertices, but discarding those that are not part of G. An
equivalent, yet more concise notation is the following:

rdeg(G) def
=

∑j>i
(
(di − d)(dj − d) ·A[i, j]

)
∑n

i=1(di − d)2

in which case we assume that the exact values of i and j are clear from the
context in which the summation is used.

For an alternative notation in which the adjacency matrix is not used at all,
we assume that the edges in G are indexed such that ei,j ∈ E(G) if and only if
(1) there is an edge joining vertex vi and vj, and (2) i > j. This brings us to:

rdeg(G) def
=

∑ei,j

(
(di − d)(dj − d)

)
∑n

i=1(di − d)2

The drawback of this notation is that it is less explicit in exactly which vertex
degrees we should take into account. On the other hand, you could argue that
it expresses more concisely what degree correlation is.

An even simpler metric for capturing vertex correlations is proposed by
Li et al. [2005] who define the scale-freeness of a graph:

Definition 6.3: Let G be a simple graph with degree sequence [d1, d2, . . . , dn] and
adjacency matrix A. Let V(G) = {v1, v2, . . . , vn} be such that δ(vi) = di. The
scale-freeness s(G) of G is defined as

s(G) =
n

∑
i=1

n

∑
j=i+1

(
di · dj ·A[i, j]

)
An important observation is that s(G) is maximal when high-degree ver-
tices are connected to each other. In other words, the scale-freeness is larger
when hubs are attached to other hubs, forming a kind of cluster. However,
the drawback of the form just given, is that it makes it difficult to compare
graphs with each other. Therefore, we again need some kind of normal-
ization. This can be achieved by considering what the maximal attainable
scale-freeness is for all graphs with the same degree sequence:

Definition 6.4: Let G be a simple graph with degree sequence d = [d1, d2, . . . , dn]
and adjacency matrix A. Let V(G) = {v1, v2, . . . , vn} be such that δ(vi) = di.
Let G(d) be the collection of graphs with degree sequence d. The normalized
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scale-freeness S(G) of G is defined as

S(G) =
∑n

i=1 ∑n
j=i+1

(
di · dj

)
max{s(H)|H ∈ G(d)}

Of course, the problem in this case is to find the maximal scale-freeness,
which boils down to finding a graph H having degree sequence d and a
maximal value s(H). The procedure is too involved for our purposes, and
the interested reader is referred to Li et al. [2005] for further information.

6.2 Distance statistics

Besides vertex-degree distributions, various distance statistics form an im-
portant class for network analysis. The distance between two vertices v and
w in a graph is expressed in terms of the length of the shortest path between
v and w.

Definition 6.5: Let G be a directed or undirected graph and u, v ∈ V(G). The
(geodesic) distance between u and v, denoted as d(u, v), is the length of a shortest
(u, v)-path.

Note that we have given an alternative definition for distance: in the case
of weighted graphs, the distance between two vertices u and v is generally
defined in terms of a (u, v)-path having minimal weight. The length of such
a path, however, need not be minimal. In practice, which type of distance is
meant is generally easy to understand from the context in which it is used.
Furthermore, we discussed in Chapter 5 how to compute shortest paths,
and demonstrated that there are efficient ways to find those paths. Note
that in an undirected graph, d(u, v) = d(v, u), but that this need not be the
case for a directed graph.

What can we learn from distance statistics? Again, they can be used
to see to what extent two networks are different or not, but also to give
an indication of the relative importance of each of the nodes in a network.
Let us first consider a few simple metrics (see also [Brinkmeier and Shank,
2005]). The eccentricity of a vertex u tells us how far the farthest vertex
from u is positioned in the network. The radius of a network, defined as the
minimum over all eccentricity values, is an indication of how disseparate
the vertices in a network actually are. Finally, the diameter simply tells
what the maximal distance in a network is. Formally, we have:

Definition 6.6: Consider a connected graph G and let d(u, v) denote the distance
between vertices u and v. The eccentricity ε(u) of a vertex u in G is defined as
max{d(u, v)|v ∈ V(G)}. The radius rad(G) is equal to min{ε(u)|u ∈ V(G)}.
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Finally, the diameter of G is the maximal shortest path between any two vertices:
diam(G) = max{d(u, v)|u, v ∈ V(G)}.

Note that these definitions apply to directed as well as undirected graphs.
Although the diameter gives us useful information, it may not be power-

ful enough to discriminate among graphs. An equally important and related
metric for network analysis is to consider the distribution of path lengths.
In particular, The average distance between vertices can provide useful in-
formation.

Definition 6.7: Let G be a connected graph with vertex set V, and let d(u) denote
the average length of the shortest paths from vertex u to any other vertex v in G:

d(u) def
=

1
|V| − 1 ∑

v∈V,v 6=u
d(u, v)

The average path length d(G) is defined as

d(G) def
=

1
|V| ∑

u∈V
d(u) =

1
|V|2 − |V| ∑

u,v∈V,u 6=v
d(u, v)

The characteristic path length of G is defined as the median over all d(u).

Note 6.4 (Mathematical language)
Recall that the median over a set of n nondecreasing values x1, x2, . . . , xn is
equal to x(n+1)/2 in case n is odd. If n is even, the median is often taken equal
to (xn/2 + xn/2+1)/2. In other words, the median separates the higher values
from the lower values into two equally-sized subsets. As we shall see later, the
characteristic path length is particularly important when dealing with networks
with only a few high-degree vertices and many low-degree vertices.

Note 6.5 (More information)
Why even bother about the characteristic path length? The problem with the
average path length is that its computation becomes quite cumbersome for very
large graphs. As we explained in Chapter 5, the time to compute all shortest
paths to a given vertex following Dijkstra’s algorithm is roughly proportional
to n2, with n being the number of vertices. In order to compute the average path
length, we need to compute the shortest paths between all pairs of vertices, of
which the computational effort is proportional to roughly n3. It is not difficult
to imagine that for large graphs, with, say more than a few thousand vertices,
this can indeed be rather time-consuming. To illustrate, such a computation
for a 10,000-node network can easily take tens of hours on a modern desktop
computer.
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As an alternative, we can also try to estimate the average path length. As it
turns out, there are extremely efficient techniques to do this for the characteristic
path length, but not for the average path length. Considering that for many
cases the two metrics return approximately the same value, considering the
characteristic path length is often preferred.

Let us consider these metrics for the graph Gsimple shown in Figure 6.4.
Regarding the eccentricity of each vertex and average distances between
vertices, these can be easily derived by considering the length of the shortest
paths between pairs of vertices, as shown in Figure 6.4. As a consequence,
the radius of the graph is equal to 5, whereas the diameter is equal to 9.
Likewise, we can compute the average path length of the graph to be 4.29.
By ordering the average path lengths of the vertices, we obtain the sequence
[3.17, 3.50, 3.67, 4.00, 4.33, 5.33, 6.00], from which we compute the character-
istic path length to be 4.

4

1 5

7

2

3
6

2

3
5

2

1

3

1

2

5

Vertex 1 2 3 4 5 6 7 ε(u) d(u)
1 0 1 5 3 3 7 2 7 3.50
2 1 0 5 2 4 7 3 7 3.67
3 5 5 0 7 4 2 3 7 4.33
4 3 2 7 0 6 9 5 9 5.33
5 3 4 4 6 0 6 1 6 4.00
6 7 7 2 9 6 0 5 9 6.00
7 2 3 3 5 1 5 0 5 3.17

Figure 6.4: The distance between vertices of the graph Gsimple (left) and the resulting
eccentricity and average path lengths.

To complete this section, for our graphs from Figure 6.1 we find the fol-
lowing values for these distance metrics, again illustrating that we are in-
deed dealing with two very different graphs:

Metric GAcomplex GBcomplex
Average eccentricity 4.59 4.09
Radius 4 3
Diameter 6 5
Average path length 2.96 2.67
Characteristic path length 2.95 2.63

6.3 Clustering coefficient

Another, often used metric is what is known as the clustering coefficient.
The idea behind this coefficient is rather simple: we want to see, for a given
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vertex v, to what extent the neighbors of v are also neighbors of each other.
In other words, to what extent are vertices adjacent to v also adjacent to each
other. Before we delve into all kinds of formalities, let us briefly consider
why measuring clustering is important.

Some effects of clustering

A common way toward spreading information is simply having a node up-
date its neighbors. In turn, neighbors can inform their neighbors, and so on.
There are many variations to this model, such as having a node select only
one or a few of its neighbors, or deciding to stop spreading updates when it
notices that a selected neighbor already has the information. Informally, this
type of dissemination is often described in the form of gossiping models,
also known as epidemic dissemination [Eugster et al., 2004]. The model is
very general: instead of information we can also consider spreading of dis-
eases, but also viruses over the Internet. Another example is that of forming
of opinions, which often depends on what the majority of your community
thinks. We shall return to these issues in more detail when discussing peer-
to-peer networks in Chapter 8.

When considering real-world networks, we often see that they are orga-
nized as a collection of interconnected groups. In terms of social networks,
this means that we can often clearly distinguish communities of nodes with
many links between its members, yet relatively few links between nodes
that belong to different communities. Actually indicating which nodes be-
long to which communities may not be easy at all. Also, nodes generally
belong to more than one community. However, we can express the existence
of communities by means of a clustering coefficient. As shown by Xu and
Liu [2008], it turns out that there is a clear relationship between the speed by
which information is disseminated in social networks and the clustering co-
efficient: the higher the degree of clustering, the slower the dissemination.
To a certain extent, this result may seem quite obvious, but from a formal
(i.e., mathematical) point of view, it turns out to be not so trivial.

What this means is that if we want to design a dissemination protocol,
we may need to take special measures in highly clustered networks in order
to guarantee a certain performance regarding the dissemination speed. This
alone has been enough reason for researchers to define and measure the
clustering coefficient of a network.

Besides this reason, measuring the clustering coefficient obviously al-
lows us to simply compare different networks, without necessarily wanting
to make use of the actual values of the respective coefficients. In this sense,
clustering coefficients can help in classifying networks.
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Local view

We first consider clustering from the perspective of vertices, as originally
introduced by Watts and Strogatz [1998]. From this so-called local view,
the best clustering that we can achieve is that all neighbors are adjacent to
each other. In other words, the neighbor set N(v) of v forms a complete
graph. Letting nv = |N(v)|, we know that N(v) will have a maximum of
(nv

2 ) =
1
2 nv(nv− 1) edges. For the clustering coefficient, we then simply take

a look at the ratio between the actual number of edges and the attainable
maximum.

Definition 6.8: Consider a simple connected, undirected graph G and vertex v ∈
V(G) with neighbor set N(v). Let nv = |N(v)| and mv be the number of edges in
the subgraph induced by N(v), i.e., mv = |E(G[N(v)])|. The clustering coeffi-
cient cc(v) for vertex v with degree δ(v) is defined as

cc(v) def
=

{
mv/(nv

2 ) =
2·mv

nv(nv−1) if δ(v) > 1

undefined otherwise

Note that we require that a vertex is adjacent to at least two other distinct
vertices. Taking this into account, the clustering coefficient CC(G) for the
entire graph is defined as the average over all (well defined) clustering co-
efficients of its vertices:

Definition 6.9: Consider a simple connected graph G. Let V∗ denote the set of
vertices {v ∈ V(G)|δ(v) > 1}. The clustering coefficient CC(G) for G is
defined as

CC(G) def
=

1
|V∗| ∑

v∈V∗
cc(v)

This notion of clustering can easily be extended to directed graphs, in which
case we merely need to distinguish the case that we have an arc 〈−→v, w〉 from
v to w from an arc 〈−→w, v〉. The neighbor set N(v) of a vertex v will have a
maximum number of 2 · (nv

2 ) = nv(nv − 1) arcs, i.e., twice as many arcs in
comparison to the number of edges in the undirected case. This brings us
to:

Definition 6.10: Let D be a simple connected, directed graph D. Consider vertex
v ∈ V(D) with neighbor set N(v). Let nv = |N(v)| and mv be the number of
arcs in the subgraph induced by N(v), i.e., mv = |A(G[N(v)])|. The clustering
coefficient cc(v) for vertex v with degree δ(v) = δin(v) + δout(v) is defined as

cc(v) def
=

{
mv/

(
2 · (nv

2 )
)
= mv

nv(nv−1) if δ(v) > 1

undefined otherwise
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In our definition for the clustering coefficient of a graph we did not make a
distinction between directed and undirected graphs. Indeed, the definition
stays the same.

Now consider the case of a weighted, undirected graph. As we men-
tioned, the clustering coefficient indicates the extent to which nodes in a
network form (more or less) closed groups. If weights represent the inten-
sity by which, for example, interactions take place, then weights are also
indicative for the strength, or closedness of a group. This reasoning moti-
vated Barrat et al. [2004] to introduce a weighted clustering coefficient. To
this end, rather than merely considering the degree of a vertex v, they first
take into account a weighted form of the vertex degree, called the vertex
strength:

Definition 6.11: Consider a simple weighted undirected graph G with vertex set
V(G) = {v1, v2, . . . , vn} and adjacency matrix A. The vertex strength σ(vi) of
vertex vi is defined as the total sum of the weights of edges incident with vi:

σ(vi)
def
=

n

∑
j=1

w(〈vi, vj〉) ·A[i, j]

We can now define the weighted clustering coefficient as follows.

Definition 6.12: Consider a simple weighted undirected graph G with vertex set
V(G) = {v1, v2, . . . , vn} and adjacency matrix A. The weighted clustering
coefficient cc(vi) of vertex vi is defined as:

cc(vi)
def
=


∑

ei,j ,ei,k∈E(G)

(
w(ei,j)+w(ei,k)

)
·A[i,j]·A[i,k]·A[j,k]

2·σ(vi)
(

δ(vi)−1
) if δ(vi) > 1

undefined otherwise

where ei,j is the edge joining vi and vj.

In other words, we consider only those edges 〈u, v〉, 〈u, w〉 incident with u,
whose other end points, v and w, respectively, are joined as well. We leave
it as an exercise to the reader to show that in the special case that all weights
are equal to 1, the weighted clustering coefficient is equal to the clustering
coefficient for an unweighted graph.

Note 6.6 (Mathematical language)
The notations used for the last clustering coefficient may appear somewhat in-
tricate. Let’s inspect them a bit further. First note how we have again con-
veniently made use of the adjacency matrix to simplify our notation. In the
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expression

σ(vi)
def
=

n

∑
j=1

w(〈vi, vj〉) ·A[i, j]

A[i, j] will be equal to 0 when there is no edge joining vertex vi and vj, effec-
tively meaning that we will be ignoring the term w(〈vi, vj〉) (recall that for a
nonexistent edge e, we let w(e) = ∞). An equivalent definition could have been
formulated using the neighbor set N(v) of vertex v, leading to:

σ(vi)
def
= ∑

vj∈N(vi)

w(〈vi, vj〉)

Somewhat more complicated is the actual expression for the clustering coef-
ficient in a weighted undirected graph. In this case, the product A[i, j] ·A[i, k] ·
A[j, k] in the nominator effectively allows us to consider only those cases in
which vertices vi, vj, and vk are all pairwise joined, i.e., forming a complete
subgraph. For this triangle, we are actually interested in the edge joining vi’s
neighbors vj and vk. The weight that we assign to the fact that these two neigh-
bors are joined is determined entirely by how important vj and vk are to vi,
which is expressed by the respective weights of the edges ei,j = 〈vi, vj〉 and
ej,k = 〈vj, vk〉. In the end, the importance of the adjacency of vj and vk for vi is
simply expressed as the weight w(ei,j) + w(ej,k).

A few other observations may further help understand the definition of
clustering coefficient for weighted graphs. Note that because of the unordered
way we are summing over edges, we will actually be considering all pairs of
edges incident with vi twice, and thus also the triangles at vi. This explains the
factor 2 in the denominator. Finally, the division by the strength of vi will now
put a relative weight on the importance of two of vi’s neighbors being adjacent,
allowing the clustering around different vertices to be compared to each other.

Global view

As explained by Newman [2003a] there is a reasonable alternative definition
for the clustering coefficient based on the number of triples and triangles in
a graph G, which are defined as follows:

Definition 6.13: Consider a simple, undirected graph G and a vertex v ∈ V(G).
A triangle at v is a complete subgraph of G with exactly three vertices, including
v. A triple at v is a subgraph of exactly three vertices and two edges, where v is
incident with the two edges.

We will use the notations nΛ(v) to denote the number of triples at v, and
n∆(v) the number of triangles at v. Likewise, we can consider the total num-
ber n∆(G) of distinct triangles of a graph G and its number nΛ(G) of distinct
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triples. We define the transitivity of a graph as follows:

Definition 6.14: Let G be a simple, connected graph with n∆(G) distinct triangles
and nΛ(G) distinct triples. The network transitivity τ(G) is defined as the ratio
n∆(G)/nΛ(G).

Network transitivity is considered a global view on clustering, as it consid-
ers the network as a whole instead of the situation local to vertices. To illus-
trate these two approaches, let us return to graph Gsimple from Figure 6.4. It
is not difficult to see that for each vertex we have the following:

Vertex: 1 2 3 4 5 6 7
cc: 1/3 0 1/3 undefined 1 1 1/3

nΛ: 3 3 3 0 1 1 6

This leads to a clustering coefficient of CC(Gsimple) = 3/6 for the graph
itself. Regarding the transitivity, we need to first count the number of trian-
gles, of which there are only two. The total number of distinct triples is 17
(by simply summing up nΛ(v)), which means that τ(Gsimple) = 2/17.

This method can, of course, also be applied to our larger examples from
Figure 6.1, for which we find:

Metric GAcomplex GBcomplex
Clustering coefficient 0.209 0.049
Transitivity 0.064 0.019

The difference between clustering coefficient and network transitivity
is subtle, yet important to make, if only for the reason that different com-
munities often loosely speak about the clustering coefficient of a graph G
without making clear whether they mean CC(G) or τ(G). In the case of
social networks, the clustering coefficient of a graph is also known as the
network density, which is formally defined as follows [Hage and Harary,
1983; Wasserman and Faust, 1994]:

Definition 6.15: Consider a simple, undirected graph G with n vertices and m edges.
The network density ρ(G) of G is defined as m/(n

2).

In other words, the network density tells us to what extent a graph is com-
plete or not, which is intuitively what we also used for defining the cluster-
ing coefficient. However, it is fairly easy to see that the network density and
clustering coefficient are not the same, which we leave as an exercise to the
reader.
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Note 6.7 (More information)
The two notions of clustering are clearly related, especially when considering
that we can also define the clustering coefficient of a vertex in terms of triangles
and triples. Clearly, we have

cc(v) =
n∆(v)
nΛ(v)

and also nΛ(v) =
(

δ(v)
2

)
Furthermore, it should also be clear that

n∆(G) =
1
3 ∑

v∈V∗
n∆(v)

to account for the fact that each triangle is counted three times if we consider
each vertex of the graph. However, only in special cases will we see that

τ(G) =
n∆(G)

nΛ(G)
=

∑ n∆(v)
3 ∑ nΛ(v)

and CC(G) =
1
|V∗| ∑

(
n∆(v)
nΛ(v)

)
are equal.

x

y

v1 v2 v3 vn

Figure 6.5: A graph with different clustering coefficient and transitivity.

The difference between the two metrics is also illustrated in Figure 6.5. Let Gk
be the subgraph induced by vertices {x, y, v1, v2, . . . , vk}. It is not difficult to see
that for every subgraph Gk we have

cc(u) =

{
1 if u = vi for 1 ≤ i ≤ k

k
0.5·k(k+1) =

2
k+1 if u = x or u = y

As a consequence, we see that

CC(G) =
1

k + 2
(2 · 2

k + 1
+ k · 1) = k2 + k + 4

k2 + 3k + 2

and thus
lim

k→∞
CC(G) = 1
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To compute network transitivity, we need to count the number of triangles,
which is equal to k. With nΛ(vi) = 1 and nΛ(x) = nΛ(y) = (k+1

2 ) = 1
2 k(k + 1),

we find that
τ(G) =

k
2 · 0.5 · k(k + 1) + k

=
1

k + 2

and thus
lim

k→∞
τ(G) = 0

We can extend the notion of transitivity to weighted graphs following
an approach suggested by Opsahl and Panzarasa [2009]. In this case, we
need to assign a weight to triples and triangles, after which we compute the
transitivity of a graph by considering the ratio of the cumulative weights on
the triangles and that of the triples. Let us start with defining precisely what
the weight of a triple or triangle is.

Definition 6.16: Let G be a simple, undirected weighted graph and consider vertex
v ∈ V(G). If H is a triple or a triangle at v where edges e1 and e2 are incident
with v, then the triple weight wΛ(H) and triangle weight w∆(H), respectively
is equal to the average of the weights of e1 and e2, i.e.,

wΛ(H) def
=

1
2
(
w(e1) + w(e2)

)
and w∆(H) def

=
1
2
(
w(e1) + w(e2)

)
In principle, the triple of triangle weight can also be defined as, for exam-
ple, max{w(e1), w(e2)}, but we shall not consider such details here. Using
these definitions, we can then define the transitivity of a weighted graph as
follows.

Definition 6.17: Let G be a simple, undirected weighted graph with H∆ its set of
triangles, and HΛ its set of triples. The network transitivity τ(G) is defined as

τ(G) def
=

∑
H∈H∆

w∆(H)

∑
H∈HΛ

wΛ(H)

Note that this definition is identical to that of transitivity in an unweighted
graph when setting weights equal to 1.

Finally, Opsahl and Panzarasa [2009] extend their definition of transitiv-
ity to directed graphs, be they weighted or not. In this case, they simply
use the same definition of weights for triples and triangles, respectively, but
restrict the enumeration of these subgraphs to so-called nonvacuous triples
and transitive triangles:
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Definition 6.18: Consider a (strict) directed graph D. Let H be a triple at v, with
its neighbors u and w in H. H is a nonvacuous triple if either 〈−→u, v〉, 〈−→v, w〉 ∈
A(H) or 〈−→w, v〉, 〈−→v, u〉 ∈ A(H). If H was a triangle at v, then H is transitive if
A(H) = {〈−→u, v〉, 〈−→v, w〉, 〈−−→u, w〉} or A(H) = {〈−→w, v〉, 〈−→v, u〉, 〈−−→w, u〉}.

In other words, H as a triple is nonvacuous if there exists either a (u, w)-
path via v or a (w, u)-path via v, and H as a triangle is transitive if w can
be reached from u both through an arc 〈−−→u, w〉 and a path in H via v, or u
can be reached from w through an arc 〈−−→w, u〉 and a directed path through
v. Figure 6.6 shows all possible (non)vacuous triples and (non)transitive
triangles.

Non-vacuous Non-vacuousVacuous Vacuous

Transitive Transitive

Transitive Transitive

Non-transitiveNon-transitive

Non-transitiveNon-transitive

Figure 6.6: (Non)vacuous triples and (non)transitive triangles at (the marked) ver-
tex v.

We will often use the clustering coefficient or network transitivity to
compare different random graphs. Both metrics are used in practice, yet
computing network transitivity for large graphs can be somewhat ineffi-
cient provided special measures are taken. We will not go into details here,
but will return to various examples when discussing concrete examples of
random graphs throughout the remaining chapters.

6.4 Centrality

Another important metric for network analysis is deciding on whether there
are any vertices “more important” than others. The importance of a vertex
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is, of course, dependent on what a graph is actually modeling. For exam-
ple, when dealing with networks representing relationships between peo-
ple, a vertex with a high degree may characterize an influential person. In
a communication network, however, the importance of a vertex may be de-
termined by the number of shortest paths of which it is member, for in that
case it may be an indication of its workload regarding processing and for-
warding messages.

In network analysis, this concept of importance is referred to as central-
ity [Kotschutzki et al., 2005]. Perhaps one of the simplest notions of central-
ity is identifying the center of a graph. It is formed by those vertices whose
eccentricity is equal to the radius of a graph:

Definition 6.19: Consider a (strongly) connected graph G. The center C(G) of
a graph G is the set of vertices with minimal eccentricity, i.e., C(G) def

= {v ∈
V(G)|ε(v) = rad(G)}.

Intuitively, a vertex is at the center of a graph when it is at minimal distance
from all other vertices. Using the eccentricity of a vertex u, we can then
define its centrality as:

Definition 6.20: Let G be a (strongly) connected graph. The (eccentricity based)
vertex centrality cE(u) of a vertex u ∈ V(G) is defined as 1/ε(u).

All vertices in the center of a graph have maximal centrality, whereas indeed
all vertices at the “edges” of a graph have very low centrality. Returning to
graph Gsimple from Figure 6.4, we find that the center consists only of vertex
7. With some computational effort, it can be shown that graph GAcomplex
from Figure 6.1 has no less than 43 vertices in its center, whereas GBcomplex
has only two vertices in the center.

Eccentricity can be used for determining whether certain functions in
a network have been optimally placed. For example, when deciding on
placing certain buildings in a city, we may want to take into account that
those buildings should be conveniently reached, such as fire stations. In
effect, the decision is to place certain functionality within a specific range of
all nodes.

Eccentricity measures the maximum distance from one node to any other
node in a network. In some cases, it is more important to know how close a
node is to all other nodes. This means that we need to take into account all
the distances from one node to the others. In that case, we simply take the
total distance of that node to every node into account, as follows:

Definition 6.21: Consider a (strongly) connected graph G. The closeness cC(u) of
a vertex u ∈ V(G) is defined as cC(u) def

= 1/
(
∑v∈V(G) d(u, v)

)
.
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Returning to our example, it is clear that a fire station should be close to
any arbitrarily chosen node. In that case, we want to optimize on the trav-
eling distance when a fire breaks out. However, matters become different in
the case of services that need to be accessed simultaneously from different
nodes, such as with hospitals, a town hall, shopping centers, and so forth.
This is where closeness comes into play. In those cases, we want to place a
service conveniently close to as many nodes as possible, which is clearly a
different criterion than minimizing the maximum distance that needs to be
traveled.

For Gsimple we find the following values for the closeness of its vertices.
Although vertex 7 forms the center of Gsimple, it is not the vertex closest to
all others, which is vertex 1.

Vertex: 1 2 3 4 5 6 7
∑ d(u, ·) 21 22 27 32 24 37 29

cC(u): 0.048 0.045 0.037 0.031 0.042 0.027 0.034

Note that comparing closeness between vertices of different graphs may
not be very useful. For example, when considering unweighted graphs, we
see that the closeness of a vertex decreases as the graph consists of more
vertices. For this reason, comparing the closeness of vertices is useful only
relative to a given graph.

Vertex centrality and closeness are both related to the reachability of a
vertex, and as such may indeed indicate the importance of a vertex. How-
ever, we have also seen another type of important vertices, namely cut ver-
tices, whose removal actually partitions a graph. One can argue that such
vertices form the center of a graph. Based on this observation, notably re-
searchers in the social sciences have introduced what is referred to as be-
tweenness. The basic idea is simple: if a vertex lies on many shortest paths
connecting two other vertices, it is an important vertex. The reasoning is
that the removal of such a vertex will directly influence the cost of the con-
nectivity between other vertices, as other (i.e., longer) shortest paths will
have to be followed. Formally, we have:

Definition 6.22: Let G be a simple, (strongly) connected graph. Let S(x, y) be the
set of shortest paths between two vertices x, y ∈ V(G), and S(x, u, y) ⊆ S(x, y)
the ones that pass through vertex u ∈ V(G). The betweenness centrality cB(u)
of vertex u is defined as

cB(u) = ∑
x 6=y

|S(x, u, y)|
|S(x, y)|

Note that because G is (strongly) connected, |S(x, y)| > 0 for all pairs of
distinct vertices x and y.
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In the following chapters we will apply these and other metrics to spe-
cific types of graphs. As we’ll see, more metrics can be defined to differ-
entiate and characterize graphs, but many of these metrics are more easily
explained and motivated given the specific context in which graphs and
networks are used to model real-world situations.
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Up to this point we have largely covered the core of traditional graph theory.
This core contains material that is mainly related to well-structured graphs,
often of limited size, which is used for the type of applications we have
discussed in the previous chapters. We now draw our attention to another
type of graph for which the theoretical foundations were laid down in the
late 1950s by Paul Erdös and Alfréd Rényi, namely graphs that were con-
structed by randomly adding edges. The field remained somewhat esoteric
until the turn of the century when scientists began to discover that many
natural phenomena could be described in terms of random graphs. This
eventually lead to a boost in research on what have been coined complex net-
works, research that is found in a myriad of fields, ranging from neurology
to traffic management to communication networks. Not without reason,
this research is often referred to as the new science of networks [Barabási, 2002;
Buchanan, 2002; Watts, 2004; Lewis, 2009].

In this chapter, we will take a first look at these random graphs (or ran-
dom networks as they are more often called). It is also here that this book
starts deviating from more traditional texts on graph theory.

7.1 Introduction

Intuitively, a random network is a (simple, connected) graph G in which
pairs of vertices are connected by some probability. In general, this means
that we start with a collection of n vertices and for each of the (n

2) possible
edges, we add edge 〈u, v〉 with some probability puv. In the simplest case,
puv is the same for every pair of distinct vertices u and v.

Initially driven by curiosity only, random networks are now considered
to be important for the simple reason that they allow us to model many
real-world phenomena:

Spatial systems: In many cases, real-world networks have a spatial dimen-
sion in the sense that there is some notion of distance between nodes.
Examples include railway networks, airline networks, computer net-
works, electricity networks, and neural networks. Modeling such net-
works as graphs implies that we need to let the probability of adding
an edge be dependent on the distance between nodes in the real net-
work: the larger the distance between two nodes, the smaller the prob-
ability of attaching them in the corresponding random graph. As it
turns out, if we take this spatial dimension into account, along with
some other properties that we discuss later on, random graphs can be
used to accurately model real-world spatial networks.
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Food webs: A food web (also called a food chain) describes the feeding re-
lationships between organisms, that is, who eats whom. Obviously,
we can model food webs as directed graphs. In particular, it turns out
that in order to get insight in the resilience of ecosystems in terms of
the extinction of species, modeling food webs as random graphs is an
appropriate technique. Unlike many other real-world networks, food
webs are generally relatively small (in the order of tens of a few hun-
dreds of nodes). Also, there is controversy regarding their structure,
which deviates from some of the more well-known random graphs
(see, e.g., Dunne et al. [2002]). In this case, using techniques from net-
work analysis as introduced in Chapter 2 and the theory of random
graphs allows us to better understand the nature of food webs.

Collaboration networks: An important class of networks is formed by var-
ious collaborations between human beings. Famous is the analysis of
networks of movie actors, formed by creating a graph of actors, link-
ing any two who have ever played in the same movie (see also [Watts,
1999]). Likewise, it turned out that modeling collaborations between
scientists using network analysis techniques and random-graph the-
ory has provided insight in how science is formed. In particular, there
is a body of work on citation networks, reflecting which scientific ar-
ticles are cited in other articles. Such networks provide insight in the
influence of published work.

In order to study real-world networks, it is necessary that we delve into
the properties of random networks. These properties can be explained us-
ing the terminology that has been introduced so far, and form the basis for
proper network analysis.

7.2 Classical random networks

As mentioned, random networks have been introduced and studied for
several decades. Paul Erdös and Alfréd Rényi introduced what are now
known as “classical” random networks, or Erdös-Rényi networks [Erdös
and Rényi, 1959]. The basic idea is that we consider a simple, connected
graph on n vertices, and that every two vertices are adjacent with some
probability p. Erdös and Rényi introduced two different types of random
graphs.

Definition 7.1: An Erdös-Rényi model of a random network on n vertices, also
referred to as an ER random graph, is an undirected graph Gn,p in which each two
(distinct) vertices are connected by an edge with probability p. For a given number
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M of edges, the ER random graph Gn,M is an undirected graph in which each of the
M edges is incident to randomly chosen pairs of vertices.

It is important to note that two graphs G1
n,p and G2

n,p may be very different.
Although they will both have n vertices, because an edge e = 〈u, v〉 between
two vertices u and v exists only with a probability p, it may well be that
e ∈ E(G1

n,p), yet that e 6∈ E(G2
n,p). In this light, we use the notation ER(n, p)

to denote the set of all ER random graphs with n vertices and probability p
that two distinct vertices are joined.

Note that an ER(n, p) graph is simple: there are no loops and there is
at most one edge between two distinct vertices. In contrast, the formal def-
inition of a Gn,M random graph allows loops and multiple edges, but in
practice we often see that they are restricted to their simple counterparts. In
this book, we concentrate exclusively on ER(n, p) graphs.

Degree distribution

Let us first see what we can expect when considering vertex degrees. For
each vertex u of an ER(n, p) graph, we know that there are at most n − 1
other vertices to which it can be connected. Let P[δ(u) = k] denote the
probability that the degree of vertex u is k. Because there are a maximum
of n − 1 other vertices that can be a neighbor of u, it should be clear that
there are (n−1

k ) possibilities for choosing k different vertices to be adjacent to
u. The probability of having u joined with exactly k other vertices (and thus
not with exactly n− 1− k vertices) is equal to pk · (1− p)n−1−k, so that

P[δ(u) = k] =
(

n− 1
k

)
pk (1− p)n−1−k

Note that our reasoning for the degree distribution of u applies to all vertices
of an ER(n, p) graph. Formally, this means that we can treat the vertex
degree as a random variable δ, for which we have just shown that it follows
what is known as a binomial distribution. In line with this observation,
we can speak of the probability that a vertex degree has value k, and write
P[δ = k].

Note 7.1 (Mathematical language)
Probability and stochastics play an important role in random-graph theory, al-
though we shall consider only a few concepts. The notion of a random variable
is important. Intuitively, it is a variable whose values can each occur with a
certain probability. In the case of discrete random variables, there are only a
finite number of possible values. This is the case, for example, when consider-
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ing the possible vertex degrees in an ER(n, p) graph. Throughout this book, we
consider only discrete random variables.

To characterize a (discrete) random variable X, we need to consider all its
possible values. A simple example is where X denotes the possible outcomes
of flipping a coin, for which there are only two possible outcomes: head or
tail. Normally, each of these values can occur with equal probability, which is
expressed as:

P[X = head] = P[X = tail] =
1
2

Likewise, we can treat the vertex degree of an ER(n, p) graph as a random vari-
able δ with possible outcomes any value from the set {0, 1, . . . , n− 1}, and sub-
sequently compute the probabilities P[δ = k] for 0 ≤ k < n. In general, if we
know that X can take values only from {x1, x2, . . . , xN}, it should be clear that

N

∑
i=1

P[X = xi] = 1

Given, for example, the distribution of the vertex degrees, we will regularly
ask ourselves what the average vertex degree will be. For any discrete random
variable X the notion of average is more accurately expressed in terms of its
mean, also known as its expected value, defined as:

E[X] def
=

N

∑
i=1

xi ·P[X = xi]

At first sight, this may seem a rather strange definition, but when giving the
matter some thought it is not difficult to see that it boils down to computing
what is known as a weighted average. First, if asked to compute the average of
all xi, anyone would do the obvious and compute

x1 + x2 + · · ·+ xN
N

In essence, what we’re doing is giving an equal weight to the contribution that
each xi has to the average of X. In terms of probabilities, we are interested the
expected occurrence of each xi, which is determined by the probability P[X = xi].
In our example of just computing the average, P[X = xi] =

1
N for each xi, and

indeed,
x1 + x2 + · · ·+ xN

N
=

N

∑
i=1

xi ·
1
N

=
N

∑
i=1

xi ·P[X = xi]

If it turns out that the expected occurrence of xi is higher than that of, say, xj, xi’s
contribution to the average of X will be higher than that of xj. In other words,
we should weigh xi more than xj, which, in turn, is expressed by the probability
P[X = xi]. This explains why we can also speak of a weighted average.
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The mean vertex degree of an ER(n, p) graph is thus computed as

δ def
= E[δ] def

=
n−1

∑
k=1

k ·P[δ = k]

We can now prove the following:

Theorem 7.1: The expected value for the vertex degree of an ER(n, p) graph is
equal to p(n− 1).

Proof. To compute the mean vertex degree, we proceed as follows:

n− 1

∑
k = 1

k ·P[δ = k] =
n− 1

∑
k− 1

(n−1
k ) k pk (1− p)n−1−k

=
n− 1

∑
k = 1

(n−1)!
k!(n−1−k)! k pk (1− p)n−1−k

=
n− 1

∑
k = 1

n−1
k

(n−2)!
(k−1)!(n−k−1)! k p · pk−1 (1− p)n−1−k

= p (n− 1)
n− 1

∑
k = 1

(n−2)!
(k−1)!(n−k−1)! pk−1 (1− p)n−1−k

= p (n− 1)
n− 2

∑
l = 0

(n−2)!
l!(n−l−2)! pl (1− p)n−l−2

= p (n− 1)
n− 2

∑
l = 0

(n−2
l ) pl (1− p)n−l−2

= p (n− 1)
m

∑
l = 0

(m
l ) pl (1− p)m−l

= p (n− 1) · 1

In other words, our best guess at what the vertex degree of an arbitrarily
chosen vertex from an ER(n, p) is, is p(n− 1).

We will often use the abbreviation P[k] instead of P[δ = k]. Let’s take a
few specific examples of ER(n, p) graphs and analyze some of their prop-
erties with the techniques introduced in the previous chapter. In particular,
we first consider the case where n = 100 and p = 0.3. As mentioned, it
is important to realize is that there are many different (i.e., nonisomorphic)
graphs that qualify as being an ER(100, 0.3) graph. As a consequence, if we
are to consider an example, we will have to construct a specific ER(100, 0.3)
graph. There are various ways to do this, to which we return later, but for
now, let G be such a constructed graph. In our case, G is constructed to be
connected, simplifying our analysis.
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We have just derived an exact expression for the vertex degree distribu-
tion of ER(n, p) graphs, which is shown in Figure 7.1(a) as the smooth curve.
However, because we are considering one specific random graph, the dis-
tribution of vertex degrees for G may differ from this one, as is also shown.
The situation changes when considering larger random graphs, as shown
in Figure 7.1(b). In general, if we consider increasingly larger graphs with
the same expected vertex degree as G, we would see that our specific exam-
ples would also better approximate the theoretical degree distribution. To
give a hint on why this is so, two observations are important. First, by con-
sidering graphs with the same expected vertex degree, we will essentially
see that the range of observed vertex degrees is the same for all graphs, in-
dependent of their respective size. Second, if the possible vertex degrees
are the same, larger graphs will have many more vertices of degree k than
smaller graphs. As a consequence, the fluctuation (i.e., standard deviation)
that we can expect to see in the number of vertices having degree k will also
be smaller. It is beyond the scope of this text to explain these matters in
more detail.

Note 7.2 (More information)
These examples illustrate that when analyzing a network, it may sometimes
be difficult (if not impossible) to draw the correct conclusion as to what kind of
network we’re actually dealing with. For example, by just looking at the specific
vertex degrees of graph G from Figure 7.1(a), we may not even suspect that we
are dealing with an ER(100, 0.3) graph. We could be more confident in the case
of the ER(2000, 0.015) graph in Figure 7.1(b), but in both cases we would need
to formulate a statistical test to draw any real conclusions. In practice, we simply
use several metrics to see what kind of graph we’re dealing with.

Other metrics for random graphs

Let’s consider some other metrics for ER random graphs. First, Fronczak
et al. [2004] show that for (large) random graphs H ∈ ER(n, p), the average
path length can be estimated as

d(H) =
ln(n)− γ

ln(pn)
+ 0.5

where γ is the so-called Euler constant (which is approximately equal to
0.5772). We have just seen that the average vertex degree δ for an ER(n, p)
graph is equal to p(n− 1), which means that for large n, we can also esti-

162



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

20 30 40 50

2

4

6

8

10

12

Vertex degree

O
c
c
u

rr
e

n
c
e

s

(a)

20 30 40 50

50

100

150

Vertex degree

O
c
c
u

rr
e

n
c
e

s

(b)

Figure 7.1: Degree distribution of a ER(100, 0.3) random graph, and the val-
ues for one specific graph G from that class (a), and similarly for a graph G∗ ∈
ER(2000, 0.015) (b).

mate the average path length as:

d(H) =
ln(n)− γ

ln(δ)
+ 0.5

To give an impression of what this means, Figure 7.2 shows these estima-
tions for different ER graphs. In Figure 7.2(a) we vary the number of ver-
tices, but keep the average vertex degree the same for the differently sized
graphs. In this way, we can compare graphs having different network den-
sities. In Figure 7.2(b) we show the effect of adding more edges (and thus
increasing the network density and average vertex degree) while keeping

163



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

the number of vertices constant. Clearly, the average path length drops log-
arithmically.
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Figure 7.2: The average path length for (a) ER random graphs of different sizes and
fixed average vertex degree, and (b) while varying the average vertex degrees for
fixed-size graphs. Figure (a) uses a logarithmic x-axis.

What about the clustering coefficient? Recall that the clustering coeffi-
cient of a vertex is computed as the fraction of edges found between the
neighbors of that vertex, and the maximum number of possible edges be-
tween those neighbors. It is not difficult to see that for an ER(n, p) random
graph the expected value of the clustering coefficient is equal to p. This can
be formally proved as follows.

Theorem 7.2: The clustering coefficient of any ER(n, p) is equal to p.
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Figure 7.3: The evolution of the size of the giant component in graphs Gp from
ER(2000, p) as a function of p.

Proof. Consider an ER(n, p) graph Gn,p and an arbitrary vertex v ∈ V(Gn,p)
with neighbor set N(v). Let nv = |N(v)|. Any two distinct neighbors have
probability p to be joined by an edge. Therefore, with (nv

2 ) possible neighbor
pairs, we can expect a total of p · (nv

2 ) edges between v’s neighbors. The
maximum number of edges is equal to (nv

2 ), so that cc(v) = p · (nv
2 )/(

nv
2 ) = p.

This also means that CC(Gn,p) = p.

Indeed, when we consider our example graphs from Figure 7.1, we find that

CC(G) = 0.299 and CC(G∗) = 0.0150

When we take a look at the connectivity of a random graph G, we find
an interesting relationship between the probability p of connecting two ver-
tices and the size of the components of G. It turns out that when increasing
p, not only does the network density of G increase (this should come as no
surprise), but also that most vertices are contained in one component while
the rest are scattered among a few very small ones. This one component is
generally referred to as the giant component. The formal mathematics un-
derlying the theory of the size of components in random graphs is beyond
the scope of this text. However, it is not difficult to take an experimental
approach to observe what is going on by simply constructing graphs with a
fixed number of vertices, but changing p. Figure 7.3 illustrates how the size
of the giant component evolves in relation to increasing p. In this case, we
take a look at the number of vertices in the largest component of a graph
Gp ∈ ER(2000, p) while changing p.

It is interesting to see how quite suddenly the giant component appears:
as soon as p comes close to even a small value such as 0.005, we see that
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the giant component swiftly moves from containing less than 25% of all
vertices to a near 100% when p = 0.015. In other words, vertices quickly
join together in a single component.

Moreover, and in line with this observation, random graphs generally
tend to be very well connected. In other words, for a random graph G, the
size of the minimal vertex cut κ(G) turns out to be fairly large. In fact, in
many real-world situations we often have to remove 70-80% of the vertices
before the remaining graph partitions into several components. What is re-
markable even in that case, is that we will again find most vertices grouped
into a single, large component, along with a few, very small components
(mostly consisting of just a single vertex). Figure 7.4 shows what happens
if we take our example graph G∗ from ER(2000, 0.015) and systematically
remove vertices. At the same time, we count how many vertices are not in
the giant component.

What Figure 7.4 shows is that we may need to remove as much as 70%
of all vertices before the graph partitions. However, even in that case, we
will still find most of the vertices in the same component. Even after having
removed 95% of all vertices, half of the remaining vertices will be connected
through a path. Note that the fraction of vertices outside the giant compo-
nent decreases when having removed more than 98% of the vertices. (It’s not
that difficult to figure out why.)

We have just discussed an important feature of random graphs, which
emerges from the basic properties of such graphs. As we will see through-
out the remainder of the text, many real-world networks combine a large
size with randomness, and indeed, most of these networks demonstrate to
be naturally resilient to (massive) node failures.
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Figure 7.4: The fraction of vertices outside of the giant component when removing
vertices from an ER(2000, 0.015) graph.
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7.3 Small worlds

In 1967, Stanley Milgram, at that time a professor of social psychology at
Harvard, was interested to know what the probability was that two ran-
domly selected people would know each other. This eventually led to the
question how far any two persons were separated from each other. Distance
was expressed in terms of “A knows B, who knows C, who knows D,. . . ,”
and so on. In other words, separation was determined by the chain of ac-
quaintances through which one person would eventually reach someone
else.

In terms of graphs, Milgram was interested to know the average path
length in what is known as a social network. In such a network, a vertex
represents a person, and an edge between two vertices A and B tells us that
A and B are acquaintances. Milgram measured the average path length by
asking arbitrary people to send letters to target persons. Let Zach be such
a target, and let Alice be a person currently in possession of the letter. If
Alice didn’t know Zach, she would have to send the letter to one of her
acquaintances, say Bob, under the assumption that she would expect Bob to
know better than her how to reach Zach. In the original experiment, letters
where initially sent from places in the Mid-West of the United States with
the targets being located in Massachusetts. Much to his surprise, for those
letters that made it to their destination, it took an average of only 5.5 hops,
leading to the now famous phrase “six degrees of separation.”

What does this have to do with random graphs? What Milgram demon-
strated, and what has been shown to hold in many real-world situations, is
that the average shortest path length is relatively small. We already saw this
to also be true for ER random graphs. However, in many social networks,
we also know that people tend to group into relatively small clusters: Alice’s
acquaintances also know each other. In other words, many social networks
(and, in fact, others as well), tend to have a high clustering coefficient.

What we are thus faced with are networks that combine the properties
of ER random graphs, yet differ when it comes to the clustering coefficient.
Watts and Strogatz [1998] were the first to propose a method to construct
such networks, which has since then spawned a wealth of research on con-
structing and studying similar random graphs, now collectively referred to
as small-world networks. The procedure proposed by Watts and Strogatz
is as follows:

Algorithm 7.1 (Watts-Strogatz): Consider a set of n vertices {v1, v2, . . . , vn} and
an (even) number k. In order to ensure that the graph will have relatively few edges
(i.e., it is sparse), choose n and k such that n� k� ln(n)� 1.
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1. Order the n vertices into a ring and connect each vertex to its first k/2
left-hand (clockwise) neighbors, and to its k/2 right-hand (counterclockwise)
neighbors, leading to graph G1.

2. With probability p, replace each edge 〈u, v〉 with an edge 〈u, w〉 where w is a
randomly chosen vertex from V(G) other than u, and such that 〈u, w〉 is not
already contained in edge set of (the modified) G.

The resulting graph is called a Watts-Strogatz random graph (or simply a WS
graph). We also refer to a WS(n, k, p) graph.

The notation “n� k” means that n should be much larger than k. Note that,
just as with ER random graphs, WS(n, k, p) actually denotes a collection of
graphs. To get a first impression of the effect of changing p, Figure 7.5 shows
a small WS graph of only 20 vertices. With k = 8, and ln(n) ≈ 3, we also see
that this example barely meets the conditions for proper WS graphs.

(a) (b) (c)

Figure 7.5: Three WS graphs with n = 20, k = 8, and (a) p = 0.0, (b) p = 0.20, and
(c) p = 0.90, respectively.

It is not difficult to see that the maximum distance between any two con-
nected vertices in Figure 7.5(a) is equal to 3. In general, for a Watts-Strogatz
graph from WS(n, k, 0), it can be shown that this maximum distance is equal
to the smallest integer larger or equal to (n/2)/(k/2) (i.e., dn/ke). What
Watts and Strogatz establish with their construction is that many vertices
will stay close together, but that most vertices will also have a link to a ver-
tex that is relatively far away. In social networks, such a link represents a
tie between different communities, and as we shall discuss later, these so-
called weak links play a crucial role in many societies (see also Csermely
[2006]). As a consequence, one would expect to see randomness combined
with a high degree of clustering.

1Recall that we orient a vertex toward the middle of the ring in order to give sensible mean-
ing to left- and right-hand.
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Figure 7.6: The labeling of vertices left and right of u.

And indeed, when examining the clustering coefficient for large Watts-
Strogatz graphs, it turns out that it stays close to the value we find for the
case in which p = 0, even for relatively large values of p. If we consider the
specific case p = 0, we can even prove that the clustering coefficient can be
as high as 3

4 . The proof is a bit tedious, but not inherently difficult.

Theorem 7.3: For any Watts-Strogatz graph G from WS(n, k, 0) the clustering
coefficient for G is equal to CC(G) = 3

4
(k−2)
(k−1) .

Proof (*). In the following, we shall make use of a simple distance metric

dn
2 (i, j) def

= min{|i− j|, n− |i− j|}

which tells us how far two nodes are when measured along the “outer ring”
of a WS graph. For example, in Figure 7.5(a), d20

2 (1, 20) = 1, d20
2 (1, 18) = 3,

and so on. We have deliberately used the notation dn
2 to indicate the case

k = 2 for a WS(n, k, 0) graph. Indeed, a WS(n, 2, 0) graph is nothing but a
collection of vertices organized as ring.

Let u be an arbitrary vertex from G and consider the subgraph H in-
duced by its set of k neighbors N(u). N(u) thus consists of u’s k/2 right-
hand (i.e., counter clockwise) neighbors {v−1 , v−2 , . . . , v−k/2} and likewise, its
k/2 left-hand (i.e., clockwise) neighbors {v+1 , v+2 , . . . , v+k/2} as shown in Fig-
ure 7.6.

Consider the degree of vertex v−1 . The “farthest” right-hand neighbor
of v−1 is v−k/2, where farthest is defined with respect to the distance metric
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dn
2 . This means that v−1 has k/2− 1 right-hand neighbors in H. Likewise,

v−2 has k/2− 2 right-hand neighbors, and, in general, v−i has k/2− i right-
hand neighbors in H. Clearly, each vertex v−i is missing only u as its left-
hand neighbor in H, meaning that it has k/2− 1 left-hand neighbors. We
can therefore conclude that the vertex degree of v−i is equal to

δ(v−i ) =
(

k
2
− i
)
+

(
k
2
− 1
)
= k− i− 1

A completely analogous reasoning holds for all vertices v+i , so that δ(v+i ) =
k− i− 1. As a consequence, the total number of edges in H is equal to

|E(H)| = 1
2 ∑

v ∈ V(H)

δ(v)

= 1
2

k/2

∑
i = 1

(
δ(v−i ) + δ(v+i )

)
= 1

2

k/2

∑
i = 1

(
(k− i− 1) + (k− i− 1)

)
=

k/2

∑
i = 1

(k− i− 1)

Knowing that ∑m
i=1 i = 1

2 m(m + 1), we obtain

|E(H)| =
k/2

∑
i = 1

(k− i− 1) = k/2(k− 1)−
k/2

∑
i = 1

i

= k/2(k− 1)− 1
2 (k/2)(k/2 + 1)

= 3
8 k(k− 2)

Because |V(H)| = k, we compute the clustering coefficient cc(u) for vertex
u as

cc(u) =
|E(H)|
(|V(H)|

2 )
=

3
8 k(k− 2)
1
2 k(k− 1)

=
3
4
(k− 2)
(k− 1)

Because all vertices are the same in G, CC(G) = cc(u), completing the proof.

As we mentioned, the idea behind Watts-Strogatz graphs is to combine
properties of classical random graphs with high clustering coefficients. What
the previous theorem tells us is that the clustering coefficient of a WS(n, k, 0)
graph is independent of its size and that for large values of k it is close to 3

4 .
As we already saw, a characteristic property of ER random graphs is

the relatively short average path length. For a WS(n, k, 0) graph, however,
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it is not difficult to see that the average shortest-path length between two
vertices may be relatively long. For example, for a WS(n, k, 0) graph we
have the following theorem.

Theorem 7.4: For a Watts-Strogatz graph G from WS(n, k, 0) the average shortest-
path length d(u) from a given vertex u to any other vertex in G is approximated
by

d(u) ≈ (n− 1)(n + k− 1)
2kn

Proof. Consider a given vertex u. Using the same notation as before, let
L(u, 1) be the k/2 left-hand neighbors {v+1 , v+2 , . . . , v+k/2} of vertex u. Like-
wise, let L(u, 2) = {v+k/2+1, . . . , v+k } be the set of k/2 left-hand next neigh-
bors, i.e., neighbors of u at distance 2. In general, we have that L(u, m) is the
set of vertices {v+

(m−1)k/2+1, . . . , v+mk/2} left of u connected to u by a (short-
est) path of length m. Another way to see this is noting that each vertex in
L(u, m) is connected to a vertex from L(u, m− 1). L(u, m) thus consists of
all left-hand neighbors of u at (shortest) distance m. Similarly, we can define
the sets R(u, m) of right-hand neighbors at distance m. Note also that the
index p of the farthest vertex v+p contained in any L(u, m) will be less than
approximately (n− 1)/2, which is roughly at the other end of the ring along
which the vertices have been organized. Because all sets L(u, m) have equal
size, this also means that m ≤ (n−1)/2

k/2 . This gives us:

d(u) ≈ 1
n

(n−1)/k

∑
i=1

(
i · |L(u, i)|+ i · |R(u, i)|

)
≈ 1

n

(n−1)/k

∑
i=1

(
i · k

2
+ i · k

2

)
where i · |L(u, i)| is nothing else but the cumulative length of the short-
est paths to u’s left-hand vertices, and likewise, i · |R(u, i)| the cumulative
length of such paths to u’s right-hand vertices. This then leads to

d(u) ≈ k
n

(n−1)/k

∑
i=1

i =
k

2n

(
n− 1

k

)(
n− 1

k
+ 1
)
=

(n− 1)(n + k− 1)
2kn

and completes the proof.

What does this mean? It tells us that WS(n, k, 0) graphs may show a
high clustering coefficient, yet miss the property of small worlds, that is,
having small average shortest-path lengths. However, it turns out that by
only slightly increasing p, the average path length of a Watts-Strogatz graph
drops rapidly. On the other hand, the clustering coefficient stays relatively
high except when p becomes large as well. These two effects are illustrated
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in Figure 7.7. In this case, we have examined a range of WS(1000, 30, p)
graphs, varying p from very small to relatively large. We compute the clus-
tering coefficients CC(G), but normalize each one of by division through
the clustering coefficient for the case that p = 0. Likewise, we compute the
average path lengths d(G), again normalized by division through the value
in case p = 0. What Figure 7.7 shows is that when increasing p, the aver-
age path length drops rapidly, but the clustering coefficient stays relatively
high.

0.0 0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1.0

Normalized cluster coefficient

Normalized average path length

Figure 7.7: The relation between clustering coefficient and average path length for
increasing value of p in a WS(1000, 30, p) graph.

7.4 Scale-free networks

The Watts-Strogatz model of networks is generally considered to represent
small-world phenomenon. However, WS random graphs often do not cap-
ture (other) properties of real-world networks, such as communication net-
works or biological networks. It was the work by Albert-László Barabási
and his student Réka Albert which caused an avalanche of research on so-
called scale-free networks. Roughly speaking, they showed that real-world
networks such as the World Wide Web, actor collaborations, and many more,
exhibit a structure in which there are a few high-degree nodes, but that the
number of nodes with a high degree decreases exponentially [Barabási and
Albert, 1999]. In this section, we will take a closer look at this phenomenon
(and will also be more precise in our formulation).

Fundamentals

By now, it has become common practice to call a network scale free if the
distribution of vertex degrees follows a power law. Roughly speaking, this
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means that the probability that an arbitrary node has degree k is propor-
tional to (1/k)α for some number α > 1 called the scaling exponent. In
mathematical terms, P[k] ∝ k−α.

For most real-world scale-free networks, it turns out that 2 < α < 3. As
an example, consider an artificially constructed scale-free network G with
2000 nodes. Figure 7.8 shows the degree distribution of G. For clarity, we
show the distribution in two different ways. Figure 7.8(a) gives us the usual
way of displaying relationships, namely using linear scales for the x and y
axes. In Figure 7.8(b) we show the same results, but now using a logarithmic
scale for both axes. In this case, we essentially see a straight line. To be
more specific, using a curve-fitting method as briefly described in Note 6.1
on page 136, one can show that

P[k] ≈ 324 · x−0.62 + 2.3

0 500 1000 1500 2000
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Node ID (ranked according to degree) Node ID (ranked according to degree)

5 10 50 100 500 2000

200
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20

10

400

(a) (b)

Figure 7.8: The distribution of vertex degrees of a scale-free network with 2000
nodes, shown as (a) a linear plot and as (b) a log-log plot.

The network from Figure 7.8 contains 2000 nodes with a median vertex
degree of 7. In other words, half of the vertices have a degree of 7 or less.
Interestingly enough, the highest-degree node is connected to no less that
382 other nodes, whereas the second-highest vertex degree is 160. This oc-
currence of a few hubs is typical for scale-free networks. To complete the
picture, in our example network only 10% of the nodes have a degree larger
than 50.

Note 7.3 (More information)
To understand why such networks are called scale-free, we note that formally a
function f (x) is called scale-free when it satisfies the following property:

f (bx) = C(b) · f (x)
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where C(b) is some constant dependent only on b. The basic idea is that the
overall form of the function f does not change when considering values for x
that are a factor b larger. As it turns out, power-law distributions obey this
property, i.e., if f (x) = x−α, we find that

f (bx) = (bx)−α = b−α · x−α = b−α f (x)

This can be nicely illustrated by our example scale-free graph G from Figure 7.8.
Figure 7.9 shows the degree distribution for nodes ranked between position 10
and 100, and between 100 and 1000, respectively. What is immediately clear
is that the form of the degree distribution is almost the same, i.e., independent
of the range of rankings we consider. This aspect is characteristic for scale-free
distributions.

Node ID (ranked according to degree)

20 40 60 80
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20
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40
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200 400 600 800
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10

15
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Figure 7.9: The degree distribution of nodes ranked between (a) 10 and 100,
and (b) between 100 and 1000.

ER random networks have been defined as graphs where there is a prob-
ability that two vertices are adjacent. Watts-Strogatz networks are con-
structed by rewiring edges, that is, changing a well-structured graph by
probabilistically repositioning its current edges between different vertices
regardless the degree of the original end points. As explained by Dorogovt-
sev et al. [2003] and Vega-Redondo [2007], scale-free graphs are fundamen-
tally different because it appears that we can construct them only through a
growth process combined with what is referred to as preferential attachment.
In other words, to understand the structure of real-world networks (which
are generally scale free), we need to concentrate on how they have come to
existence by observing how new nodes attach themselves to existing nodes.

Barabási and Albert [1999] were the first to devise a procedure for the
construction of scale-free networks. Their procedure combines the growing
of a network with attaching new nodes to existing ones with certain prefer-
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ences. The algorithm is as follows:

Algorithm 7.2 (Barabási-Albert): Consider a (relatively small) ER random graph
G0 with n0 vertices V0. At each step s > 0:

1. Add a new vertex vs to Vs−1 (i.e., Vs ← Vs−1 ∪ {vs}).
2. Add m ≤ n0 edges to the graph, each edge being incident with vs and a vertex

u from Vs−1 chosen with probability

P[select u] =
δ(u)

∑w∈Vs−1
δ(w)

that is, choosing a vertex u is proportional to the current vertex degree of u.
Vertex u must not have been previously chosen during this step.

3. Stop when n vertices have been added, otherwise repeat the previous two
steps.

The resulting graph is called a Barabási-Albert random graph , or simply a BA
graph. We also refer to a BA(n, n0, m) graph.

Obviously, after t steps we will have a graph with t + n0 vertices and
t · m + |E(G0)| edges. (Note that G0 may have no edges to begin with.)
Barabási and Albert [1999] show that for this model, the probability P[k]
that an arbitrary vertex v has degree k is proportional to k−3.

Note 7.4 (More information)
To get a better grasp on why the degree distribution of a BA graph is propor-
tional to k−3, we adopt the notations and approach as found in [Vega-Redondo,
2007] (and which were originally introduced by Dorogovtsev et al. [2000]). For-
mally, we have the following:

Theorem 7.5: For any BA(n, n0, m) graph G, the probability that vertex v ∈ V(G)
has degree k ≥ m is given by:

P[k] =
2m(m + 1)

k(k + 1)(k + 2)
∝

1
k3

Proof (*). Let qt(s, k) denote the probability that at step t vertex vs has degree
k (with s < t). In order for the degree of vs to increase by 1, it is necessary
that vt attaches to vs. There are m opportunities to let this happen, each with
probability P[select u] as given above. If we assume that |E(G0)| = 0, we know
that there are a total of m(t− 1) edges just before step t so that ∑w∈Vt−1

δ(v) =
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2|E| = 2m(t− 1). In other words, the probability that vs will be attached to vt
is

P[attach to vs] = m · δ(vs)

∑w∈Vs−1
δ(w)

=
m(k− 1)
2m(t− 1)

=
k− 1

2(t− 1)

The probability that the degree of vs was k and stays so, is equal to 1− k
2(t−1) .

Combining these two results, it should then be clear that

qt(s, k) =
(

k− 1
2(t− 1)

)
· qt−1(s, k− 1) +

(
1− k

2(t− 1)

)
· qt−1(s, k) (7.1)

The first term represents the situation where the new node attaches to s,
whereas the second term covers the case where s’s degree stays the same
(namely k).

We are interested in finding the distribution Pt[k] of the vertex degrees af-
ter t steps. In other words, we want to know the probability that any vertex
v1, . . . , vt has degree k. The probability that vertex s has degree k at step t is
largely independent of that of vertex s′ > s, certainly when s is large. This
means that we can simply compute Pt[k] as

Pt[k] = qt(·, k) =
1
t

t

∑
s=1

qt(s, k)

Using expression (7.1) we need to distinguish two cases. First, If k > m we
know that the added vertex vt does not belong to the set of vertices with degree
k, so that we have

t

∑
s=1

qt(s, k) =
k− 1

2(t− 1)

t−1

∑
s=1

qt−1(s, k− 1) +
(

1− k
2(t− 1)

) t−1

∑
s=1

qt−1(s, k)

However, if k = m, it must be the case that vt is in this set as well. In other
words,

t

∑
s=1

qt(s, m) =
m− 1

2(t− 1)

t−1

∑
s=1

qt−1(s, m− 1) +
(

1− m
2(t− 1)

) t−1

∑
s=1

qt−1(s, m) + 1

To keep matters simple, we will first concentrate on the situation that k > m.
We are seeking to express qt(s, k) in terms of the probability Pt[k]. By straight-
forward algebraic manipulation, we obtain the following:

t

∑
s = 1

qt(s, k) =
1
2

t−1
t−1 (k− 1)

(
1

t−1

t− 1

∑
s = 1

qt−1(s, k− 1)
)

− 1
2

t−1
t−1 k

(
1

t−1

t− 1

∑
s = 1

qt−1(s, k)
)

+ (t− 1)
(

1
t−1

t− 1

∑
s = 1

qt−1(s, k)
)

=
1
2

(
(k− 1)Pt−1[k− 1]− kPt−1[k]

)
+ (t− 1)Pt−1[k]
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Knowing that
t

∑
s=1

qt(s, k) = t
(

1
t

t

∑
s=1

qt(s, k)
)
= tPt[k]

and lim
t→∞

Pt[k] = P[k], we find

(k + 2)P[k]− (k− 1)P[k− 1] = 0

When we consider the special case k = m, we apply exactly the same algebraic
manipulations to find that

(m + 2)P[m]− (m− 1)P[m− 1] = 2

Of course, P[m− 1] = 0, as there can be no vertex with a degree lower than m,
which means that P[m] = 2/(m + 2). We now have:

P[k] =
k− 1
k + 2

P[k− 1] =
k− 1
k + 2

k− 2
k + 1

P[k− 2] = . . . =
m(m + 1)(m + 2)
k(k + 1)(k + 2)

P[m]

Substituting P[m] in this equation gives us

P[k] =
2m(m + 1)

k(k + 1)(k + 2)

which completes the proof.

It should be mentioned that BA graphs are not the only ones for con-
structing scale-free networks. One particular interesting extension to the
Barabási-Albert model is the following:

Algorithm 7.3 (Generalized Barabási-Albert): Consider a small graph G0 with n0
vertices V0 and no edges. At each step s > 0:

1. Add a new vertex vs to Vs−1.

2. Add m ≤ n0 edges, each edge being incident to vs and a vertex u from
Vs−1 chosen with probability proportional to its current degree δ(u) (and
not previously chosen in this step).

3. For some constant c ≥ 0 add another cm edges between vertices from Vs−1,
where the probability of adding an edge between vertices u and w is propor-
tional to the product δ(u) · δ(w), and under the condition that 〈u, w〉 does
not yet exist.

4. Stop when n vertices have been added.
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As shown by Dorogovtsev et al. [2003], the resulting graph corresponds to
a scale-free network for which the vertex degree is proportional to

P[k] ∝ k−(2+
1

1+2c )

In other words, for c = 0 we have a BA graph, but for increasing values of
c, the exponent converges to 2.

Properties of scale-free networks

As it may have become clear by now, formal analysis of random networks
is generally far from trivial. This is certainly also true for the scale-free net-
works discussed previously. The consequence of this observation is that in
order to attain insight in the properties of scale-free networks, we need to
simply apply the network analysis tools from Chapter 6 and see what we
can learn from experiments.

Let us first consider the clustering coefficient. As we have seen for ER
random graphs, the clustering coefficient can be expressed independently
of the size of the graph. For Watts-Strogatz graphs, we have shown that the
clustering coefficient is large and stays almost the same even for relatively
large rewiring probabilities. More importantly is that for Watts-Strogatz
graphs the clustering coefficient is independent of the number of vertices.

The situation for scale-free networks is more complicated. In fact, find-
ing an analytical expression that estimates the clustering coefficient for gen-
eral scale-free networks has not yet been found. Fronczak et al. [2003] con-
sidered the situation for BA random graphs, and, in particular, looked at the
clustering coefficient cc(vs) of vertex vs after t steps had taken place in the
construction of a BA(t, n0, m) graph (of course, s ≤ t). They find:

cc(vs) =
m− 1

8(
√

t +
√

s/m)2

(
ln2(t) +

4m
(m− 1)2 ln2(s)

)
When evaluating this somewhat ghastly expression for fixed values of m
and t, yet varying s, we obtain low clustering coefficients, as shown in Fig-
ure 7.10.

To see how these values compare to those of an ER random graph, we
consider an ER random graph with the same number of vertices and the
same average vertex degree. We first compute the average vertex degree
of a BA(n, n0, m) graph for very large n. As proven in Note 7.4, the degree
distribution for a BA graph is given by

P[k] =
2m(m + 1)

k(k + 1)(k + 2)
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Figure 7.10: The clustering coefficient for vertices vs in a BA(100 000, n0, 8) graph.

Taking exactly the same approach for computing the average vertex degree
for an ER random graph, the average vertex degree for a BA random graph
can be computed as:

δ(G) = E[k] =
∞

∑
k=m

k · P[k] = 2m(m + 1)
∞

∑
k=m

k
k(k + 1)(k + 2)

= 2m

(We leave it as an exercise to the reader to show that this computation of
E[k] is indeed correct.) For a vertex of an ER random graph, we know that
cc(v) = p and that δ(v) = p(n− 1). In other words, to get the same average
vertex degree for an ER random graph as that of a BA graph, we need to
take p equal to 2m/(n − 1). For our example from Figure 7.10, we then
find that cc(v) = 16/9999 ≈ 0.00016. This means that roughly speaking, the
clustering coefficient in BA graphs is an order higher than that of ER graphs,
yet it remains relatively small. Considering that many real-world networks
combine scale-freeness and high clustering, it is clear that BA graphs do not
form an adequate model of real life. We return to this issue shortly.

What about average path lengths? Fronczak et al. [2004] derive the fol-
lowing estimation of the average path length for a BA(n, n0, m) random
graph:

d(BA) =
ln(n)− ln(m/2)− 1− γ

ln(ln(n)) + ln(m/2)
+ 1.5

where γ is the Euler constant, which we also came across when estimating
the average path length for ER random graphs. To get a better idea of what
this estimation means, we can make a comparison with ER random graphs.
To this end, consider ER and BA random graphs having the same average
vertex degree, and compare their respective average path lengths. The re-
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sult for δ = 10 is shown in Figure 7.11 (and again using a linear and a
logarithmic scale for the x axis).
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Figure 7.11: Comparing the average path length of ER and BA random graphs with
the same average vertex degree on a (a) linear plot and (b) a log-linear plot.

What is illustrated in this figure is that BA graphs tend to systematically
have a relatively much lower average path length than ER random graphs.
Considering that the average path length for random graphs is already very
low, this is a somewhat remarkable result. On the other hand, unlike ER
random graphs, we are now dealing with graphs containing hubs: vertices
with high degrees, essentially acting as intermediates between other, less
well-connected vertices. For example, one may expect that the eccentricity
of a hub is relatively low: a hub is simply close to every vertex. But this
also means that most vertices can easily reach other by means of a path

180



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

containing a hub.
We are thus dealing with what are also called super small worlds. And

although being able to reach another vertex in only a few steps is a nice
property of a large graph, the hubs do form a potential bottleneck. In com-
munication networks, they would generally need to process a lot of tran-
sient traffic. Worse is that they may also be vulnerable to attacks. Intuitively,
systematically disabling hubs should quickly partition a network into sev-
eral disjoint components, a highly undesirable situation.

To illustrate these matters, Figure 7.12 shows what happens when we
systematically remove vertices from a scale-free graph in comparison to re-
moving the best-connected vertices from an ER random graph. We also
show the effect of removing randomly selected vertices from a scale-free
graph (which is very similar to randomly removing vertices from an ER
graph). A scale-free network is thus seen to be sensitive to a targeted attack,
but just as robust as an ER random graph in the case of a random attack.
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Figure 7.12: The fraction of vertices outside the giant component when removing
hubs from a scale-free graph, and those from an ER random graph.

Related networks

As we mentioned, the Barabási-Albert approach for constructing a scale-
free graph has one important shortcoming when comparing it to real-world
networks: its relatively low clustering coefficient. A better understanding
of real-world phenomena should normally be reflected by better models
and in this sense, a BA random graph is difficult to validate against many
real-world data. Therefore, researchers have been seeking solutions for con-
structing scale-free graphs that have a high clustering coefficient.
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As argued by Dorogovtsev et al. [2003], constructing such graphs is ac-
tually quite simple. The trick is to make sure that there are many triangles.
This can be achieved, for example, by adding an edge to a triple at each step
of the growing process. (Recall that a triple was a subgraph with 3 vertices
and 2 edges.) Holme and Kim [2002] provide a scheme that combines scale-
freeness and at the same time allows to tune to what extent clustering is to
be provided. Their algorithm proceeds as follows:

Algorithm 7.4 (Barabási-Albert with tunable clustering): Consider a small graph G0
with n0 vertices V0 and no edges. At each step s > 0:

1. Add a new vertex vs to Vs−1.

2. Select a vertex u from Vs−1 that is not adjacent to vs and with a probability
proportional to its degree δ(u). Add edge 〈vs, u〉. Add the remaining m− 1
edges as follows:

a) If m− 1 edges have been added, continue with Step 3. Otherwise, pro-
ceed with the next step.

b) With probability q: select a vertex w that is adjacent to u, but not to
vs. If no such vertex exists, continue with Step 2c. Otherwise, add edge
〈vs, w〉 and continue with Step 2a.

c) Select a vertex u′ from Vs−1 that is not adjacent to vs and with a
probability proportional to its degree δ(u′). Add edge 〈vs, u′〉 and set
u← u′. Continue with Step 2a.

3. Stop when n vertices have been added, otherwise repeat from Step 1.

What happens in this approach, is that with probability q we explicitly con-
struct a triangle between the newly added vertex vs, the vertex u to with
it attaches, and one of u’s neighbors w. Intuitively, it should be clear that
we are more or less controlling the clustering coefficient of vertex vs. For
example, if we choose q = 1, and under the assumption that u has k ≤ m
neighbors w1, w2, . . . , wk, vs will connect to u as shown in Figure 7.13. From
Chapter 6, where we examined the situation that none of the vertices wi
were adjacent to each other, we know that the clustering coefficient for u
and vs is high (and which will grow if edges 〈wi, wj〉 exist).

Holme and Kim [2002] show that their approach yields graphs in which
the distribution of the vertex degree follows a power law with scaling ex-
ponent α = 3. Although they do not derive an analytical expression for the
clustering coefficient, experiments show that by varying q, clustering can
easily be varied between the one observed for pure BA random graphs, and
high values such as 0.5.
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Figure 7.13: The subgraph in which a newly added vertex is contained when at-
taching to vertex u.
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Modern life is difficult to imagine without the Internet. What started in the
late 1960s as a simple network of a handful of computers has now grown
into an immensely complex communication infrastructure with hundreds
of millions of computers and which continues to grow. The Internet as a
computer network is often taken to be the same as the World Wide Web (or
just simply Web), yet they are fundamentally different. In this chapter we
will start with first taking a look at computer networks, in particular the
Internet. Second, we’ll dive a bit into what are known as overlay networks.
These networks are characterized by the fact that a (often very large) group
of computers maintain their own communication network and as such form
a special type of subnetwork using the Internet as their foundation. Thirdly,
we’ll pay attention to the World Wide Web and explain where and how it
differs from the Internet.

8.1 The Internet

The Internet as a communication network consists of a huge collection of
computers connected to each other. The organization of the Internet essen-
tially follows a hierarchical structure consisting of home networks, com-
puter networks in organizations, networks that are owned by Internet Ser-
vice Providers, and backbone networks, among other types of computer net-
works. They are all connected together, often using the same infrastructure
as used for telephony. Connections may occur through guided media (i.e.,
wires), but we are increasingly seeing wireless connections for communica-
tion as well. In addition, the communication devices vary tremendously:
ultra-small networked sensors, smartphones, laptop computers and work-
stations, servers, routers, and supercomputers. One may wonder how it is
even possible to say anything sensible about the structure of the Internet? To
answer this question, let’s first consider some of the basics and then move
onto the phenomenon of interconnected networks.

Computer networks

Small-area networks

There are different ways of characterizing networks, but one that is conve-
nient for our discussion here is simply looking at the physical diameter of a
computer network. Typically, networks that span areas up to at most, say,
a few hundred meters are characterized by a relatively high density of net-
worked computers, also referred to as hosts. Hosts send packets to each
other through the network that connects them. These networks differ from
ones that span large areas, in the sense that routing plays a less prominent
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role. Routing a packet from a source host A to its destination host B means
that the packet is required to follow a communication path from A to B.
Typically, such paths are set up using one of the shortest path algorithms
we discussed in Chapter 5. Without going into further details, setting up or
finding a route in a small-area network is relatively easy. Moreover, these
small-area networks are generally owned and managed by a single admin-
istrative organization.

To get an impression of what we’re dealing with, Figure 8.1 shows the
typical organization of a small-area network. Such a network consists of
several local-area networks, or LANs, each typically being a collection of
10-100 computers connected by means of what is known as a switch. The
switch ensures that a packet addressed to one of its connected computers is
forwarded to that computer.

Switch

Internet

Switch

Router

Router

Router

Router
Security
gateway Firewall

LAN 3

Server group

LAN 1

LAN 2

R1

Figure 8.1: A typical example of a small-area network, consisting of a collection of
connected local-area networks.

Addresses

LANs can be connected to each other by directly connecting their respective
switches, effectively leading to a larger LAN. In addition, it is common prac-
tice to use connect LANs through internal routers, which we will explain
shortly. What is important for our discussion is that each networked host
has an address. Having an address allows us to send data packets from one
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host to another. If we concentrate on the most common case for modern net-
works, there are two types of addresses we need to distinguish. First, each
host has a world-wide unique identifier in the form of a 48-bit number. This
so-called MAC address comes with the host when it is manufactured (or,
more precisely, is associated to a host’s network hardware). When a host is
connected to a port of a switch (see Figure 8.2), the switch can automatically
discover the host’s MAC address to subsequently uniquely associate the
specific port with that address. As a consequence, when a host with MAC
address MA1 (connected to port P1) requests a packet to be forwarded to
host MA2 (connected to port P2), the switch uses the port identifiers to for-
ward the packet from port P1 to P2, and thus implicitly from address MA1
to address MA2.

Port

to/from host

Figure 8.2: A 16-port switch as used in local-area networks.

More important, however, is the fact that a host can be assigned an IP ad-
dress, where IP stands for Internet Protocol. Unlike a MAC address which
is persistent, meaning that it cannot be changed, an IP address needs to be
explicitly assigned when a host is connected to a network. Address assign-
ment can be done manually or automatically, and can be done statically or
dynamically. For example, in some cases a separate address assignment ser-
vice is used to hand out IP addresses with an associated lease time. When a
lease expires, the host will need to get a new IP address1.

A host with IP address IA1 normally uses that address to send a packet
to a destination, say a host with IP address IA2. In contrast to MAC ad-
dresses, an IP address can be used to truly route packets through a commu-
nication network. In this case, routers are represented as the nodes of such a
network, and physical links between routers as its edges. In essence, when-
ever a host wants to send a packet, it needs to make sure that the packet gets
to a router, who will then take care of the rest. To this end, it simply sends
the packet using the MAC address of a locally accessible router as its desti-
nation. From there on, it’s the router’s job to forward the packet toward its
destination.

1The mechanism just described is generally implemented by means of a so-called DHCP
server, where DHCP stands for Dynamic Host Configuration Protocol.
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network identifier host identifier

32 bits

Figure 8.3: The structure of an IP address, consisting of a network identifier and a
host identifier.

To avoid that routers need to discover routes to every individual host,
a simple aggregation takes place by splitting an IP address into two parts:
a network identifier and a host identifier as shown in Figure 8.3. In the
following we will not distinguish among the different types of IP addresses
and consider only the ones that are made up of 32-bit numbers. We assume
that 16 bits have been reserved for the network identifier and 16 for the host
identifier. This means that there can be at most 216 = 32, 768 different net-
works, each having at most 216 hosts. Whenever a company wants to create
a network, it needs to be assigned one or several network identifiers. These
identifiers are assigned by a global organization, and will therefore need to
be requested. Stepping over many practical matters, in our example net-
work from Figure 8.1, we would need at least three network identifiers: one
for the server group, one for LAN #1, and one for the connected LANs #2
and #3. When taking routing decisions, a router considers only the network
address and completely ignores the host identifier. So, for example, when
router R1 from Figure 8.1 receives a packet addressed to a host on LAN #2, it
only takes a look at the network identifier in that address and subsequently
forwards the packet to the switch of LAN #3, who will then take over the
responsibility of getting that packet to its destination.

It turned out that the total number of available network identifiers in
the Internet was not enough to support its growth. Therefore, alternative
schemes and technical solutions are being used to ensure that each host can
be assigned an IP address. Nevertheless, the basic approach just described,
namely that each host is addressed by means of a pair of <network,host>
identifiers has been left unaltered. This observation is important as routers
take decisions on where to forward packets to using only network identi-
fiers.

Other small-area networks

Besides these small-area networks, there are two other types of networks
worth mentioning. The first one is formed by home networks, which typ-
ically consist of one to several end-user computers, along with networked
devices such as set-top boxes for digital TV, Internet-enabled telephones,
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and multimedia centers. These type of networks are growing fast in terms
of what they offer to end users. Typically, we are seeing that many domestic
appliances are becoming network aware, if alone to smoothly regulate en-
ergy consumption. In addition, many home networks facilitate installation
of sensors for monitoring purposes (think of burglar systems, networked
smoke and fire detectors, surveillance cameras, and so forth). A home net-
work generally has only a single IP address associated with it, which is sub-
sequently shared between all the devices. It is beyond the scope of this text
to explain how this sharing is realized. What is important is that a home net-
work from the outside is often indistinguishable from a single networked
computer: both have a globally unique IP address.

Secondly, there are also (wireless) access networks, whose sole purpose
is to allow devices to connect to the Internet. Typically, access networks
support wireless connection setups to mobile devices. When making use of
such a network, a device is usually provided with a dynamically assigned
IP address whose network identifier is inherited from the access network.
By keeping track of which device was assigned which IP address, packets
are routed to the access network from where a router or switch can forward
the packet to its destination.

Large-area networks

Small-area networks form what is known as the edge of the Internet: net-
works beyond which packets are no longer forwarded. In practice, we see
these small-area networks be connected to larger networks owned by orga-
nizations who make it their business to provide many end users and organi-
zations access to the Internet, or which offer the services to transmit packets
across the Internet. These Internet Service Providers, or simply ISPs, gen-
erally span much larger geographical areas than small-area networks. In
contrast to the small-area networks discussed previously, routing plays an
important role.

The smallest large-area networks consist of the access networks we just
discussed (and in this sense, there is usually not a clear-cut distinction be-
tween small and large-area networks). Examples include modern wireless
access networks that span a whole neighborhood or even a city. In addition,
there are many local ISPs that not only provide Internet access, but also basic
services such as e-mail.

These so-called tier-3 networks have what is known as a peering rela-
tionship with tier-2 networks. A peering relationship between networks
N1 and N2 may occur when N1 has a router that is connected through
a direct link with a router of N2. Such routers are also known as border
gateways, as they allow for traffic to flow into and from the network, that
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is, they operate at the border of a network. Tier-2 networks are often con-
nected to other Tier-2 networks, allowing packets to cross larger areas. As
said, routing plays a prominent role in these cases. Regional ISPs, such as
those covering a (small) country are typical examples of tier-2 networks.

Finally, we distinguish tier-1 networks, which provide the backbone of
the Internet. End users usually never connect directly to tier-1 networks.
Instead, these backbones provide services and routing capabilities only to
tier-2 networks. Note that there may be several tier-1 networks operating in
the same area. This allows regional ISPs to choose from which network they
will make use. In fact, ISPs may change their peering relationships without
end users even noticing.

Measuring the topology of the Internet

All of the networks we discussed so far are usually each managed by a sep-
arate administrative unit. This is certainly the case for large-area networks.
For small-area networks, we often see that the networks are still managed
separately (as is typically the case for corporate local-area networks), or
management is partly delegated to end users (as with home networks).
Roughly speaking, a collection of networks that fall under the regime of the
same administration and that follow the same policy regarding how to route
packets, is known as an autonomous system or simply AS. By connecting
autonomous systems, we essentially obtain the structure of the Internet. In
other words, the Internet can be represented as a graph where a vertex rep-
resents an autonomous system, and an edge the fact that two autonomous
systems have a peering relationship. As of this writing, there are more than
25,000 autonomous systems.

The AS topology

Discovering what is known as the AS topology of the Internet is on the sur-
face relatively easy provided certain details are not taken into account (and
which we will indeed skip for now). Each autonomous system is assigned
a unique number called its AS number. Note that this assignment is done
through a central authority, as is the case for assigning network addresses.
Each AS announces which networks fall under its regime by essentially
advertising 〈AS number, network identifier〉 pairs. Such announcements are
made by the AS’s border gateways discussed previously, and are picked up
by the respective neighboring border gateway of an adjacent AS. As an ex-
ample, assume that AS 1 manages a network with identifier nid. A border
gateway connecting AS 1 to AS 2 may send the pair 〈AS1, nid〉 to AS 2. At
that point, AS 2 will have discovered a route to network nid. AS 2, in turn,
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may advertise this information to its own neighbors, in which case it would
send the tuple 〈AS2, AS1, nid〉 to its neighbors.

You may have noticed that this approach toward discovering routes is
essentially the same as the one applied in the Bellman-Ford algorithm we
discussed in Chapter 5. And indeed, the core of the so-called Border Gate-
way Protocol (BGP) which is deployed for discovering routes between au-
tonomous systems is exactly this routing algorithm. However, instead of
only reporting distances, BGP requires that an AS advertises the complete
path it found to a destination. This information will allow a recipient to de-
cide whether it will actually use that path for routing packets. Generally, a
gateway will keep only information on its discovered shortest path to a net-
work. Information on paths that are longer is simply discarded. What we
are thus seeing is that (1) border gateways learn about shortest paths to net-
works in other autonomous systems, and (2) advertise this information to
their neighbors, allowing each, in turn, to discover paths to those networks
as well.

With over 25,000 autonomous systems, each having many networks to
which packets must be routed, it is clear that the information that must be
stored at a border gateway can be huge. In principle, each gateway is re-
quired to have an entry for every discovered network. Even with using
many sophisticated techniques to combine routing information, a border
gateway is currently required to store close to 300,000 entries. These entries
are exclusively used to decide to which next AS an incoming packet is to be
routed. In addition, every gateway stores information on well over 800,000
routes. In principle, those routes cover all paths between networks in the
Internet.

With this in mind, it may now be clear how we can discover the AS topol-
ogy of the Internet: we simply retrieve the routing tables from border gate-
ways in order to collect as many routes as possible. Of course, this is much
easier said than done. As explained by Huston [2006], many ASes use mul-
tiple AS numbers resulting in approximately twice as many observed ASes
as there are in reality. In addition, an AS may decide not to advertise a link
to one of its neighbors because it simply doesn’t want to support traffic of
other ASes over that link. In other words, there may be a connection be-
tween two border gateways from different ASes, but this is not reflected in
BGP routing tables. Another source of errors is the dynamicity of the ta-
bles: when a link is temporarily out-of-order, it may not show up in routing
tables.

As an aside, the discovery of the AS topology brings up an important
scientific question, namely to what extent does our input data accurately
represent what we are trying to model. We will return to this issue when we
discuss how to construct a graph model of the Web.
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A snapshot of the AS topology

Essentially using the method just described, Chi et al. [2008] have collected
data on how autonomous systems link to each other. Taking a single snap-
shot from October 2008, we obtain a network consisting of over 30,000 ver-
tices and more than 100,000 edges. Figure 8.4 illustrates that we are ap-
parently dealing with a scale-free network, although the data points do not
quite fit a straight line.
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Figure 8.4: The degree distribution of the AS topology using BGP router data. The
x and y axis are scaled logarithmically.

There are a number of interesting points to observe about this topology.
First, it may be somewhat surprising to see how well connected some of the
autonomous systems are. If we consider the degrees of the top-10 ASes, we
find the following:

Rank: 1 2 3 4 5 6 7 8 9 10
Degree: 3309 2371 2232 2162 1816 1512 1273 1180 1029 1012

Not only do we see that the top AS is connected to more than 10% of all other
ASes, we can also observe that this type of connectedness drops rapidly as
one would expect from a scale-free network. As we discussed before, such
a degree distribution may have a serious adverse effect on the robustness of
the network, in the sense that a targeted attack by which we remove well-
connected nodes may easily lead to partitioning the network.

Haddadi et al. [2008] have analyzed other properties of the AS topology
found from BGP routers. Not only did they find high clustering coefficients
for the top 1000 nodes, these nodes are also connected to each other forming
an almost complete graph. In line with these observations is the distribu-
tion of shortest paths: most paths are no longer than three or four hops,
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and virtually all ASes are separated by a shortest path of maximum length
six. Again, we see the small-world phenomenon occur in the network of
autonomous systems.

Note 8.1 (More information)
Unfortunately, just taking a snapshot of the AS topology may not provide
enough information of what is going on. There are two problems that need
to be addressed. The first one is caused by the fact that even with data from
a large number of BGP routers, one can never be sure to have captured all ex-
isting peering relationships between autonomous systems. In fact, it turns out
that finding the actual links at a given time may indeed be very difficult. The
second problem has to do with the fact that large real-world networks are in
continuous flux: links and nodes may appear to come and go all the time due
to intermittent failures, making it more difficult to identify truly new peering
relationships or those that have been discontinued.

Consequently, when we’re interested in identifying the real topology of the
AS network, we need to do a bit more than just analyze a few snapshots. We
will not go into further details here, but refer the interested reader to Chi et al.
[2008] and Raz and Cohen [2006]. The latter provide evidence that more than
30% of the existing links are missing from the AS topologies derived from BGP
routers. In fact, Oliveira et al. [2008] argue that only the observed links between
the autonomous systems for tier-1 networks are reasonably accurate. For tier-3
networks, using BGP routing information is argued to be highly incomplete.

8.2 Peer-to-peer overlay networks

As will have become clear by now, the Internet is simply huge. In practice,
we see that the Internet is used as a universal platform for a wide variety of
applications. Perhaps the most well-known application is the Web, which
we will discuss in Section 8.3. In many cases, Internet applications are or-
ganized according to what is known as a client-server architecture. In this
case, the core of an application is hosted by a special computer, known as
a server. The rest of the application consists of a program hosted on a so-
called client computer. This client program can send a request to the server,
where it is processed, after which the server sends a reply back to the client.
A well-known example of this client-server architecture is actually the Web:
the client program is formed by a Web browser; the server is the computer
maintaining a specific Web site.

A client-server architecture can be represented by a simple graph in
which clients and server are represented by vertices, and where each client
vertex is joined with the vertex representing the server, as shown in Fig-
ure 8.5.
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Server

Client

Client

ClientClient

Figure 8.5: Representing a client-server architecture as a graph. In this example,
there are four clients.

Although it would seem that the server in a client-server architecture
may easily become a performance bottleneck, you need to realize that clients
come and go quickly. In most cases, a client merely sends a request to the
server, the server processes that request, and subsequently sends an answer
back. After that, the client and server each go their own way. In graph-
theoretical terms, the edge between a client and server will eventually be
broken again. Nevertheless, in case we are dealing with requests that re-
quire substantial server processing time, or when responses require return-
ing huge amounts of data, servers can indeed become a bottleneck because
they can only process a limited number of requests per time unit. It is be-
yond the scope of this text to go into these matters in more detail. See Tanen-
baum and van Steen [2007] for more information.

Since the late 1990s, researchers have been exploring alternative archi-
tectures to address scalability problems for large, distributed applications
whose constituents are spread across the Internet. In principle, each con-
stituent, called a peer, consists of a program that is being executed on a
single computer. Each peer maintains a list, called a partial view, of other
peers that form part of the distributed application. This partial view has the
sole purpose to allow for the exchange of application-specific data between
two peers. If we were to represent such a distributed application as a graph,
each peer would be represented by a vertex and an edge would represent
the fact that two peers would have each other in their respective partial
views. Taking all these peers and their respective partial views into account
leads to what is known as a (peer-to-peer) overlay network: a communica-
tion network between the constituents comprising a distributed application.

Structured overlay networks

One important type of overlay network is formed by networks that are or-
ganized in a structured fashion. In particular, the partial view of each peer
is filled with references to very specific peers as opposed to having a partial
view with references to randomly chosen peers. We will discuss the latter
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type in the following section.

The Chord peer-to-peer network

To make these matters concrete, let’s consider the Chord peer-to-peer net-
work [Stoica et al., 2003]. The principle behind Chord is relatively simple,
which is also the reason why we’ll use it to explain structured peer-to-peer
networks. A survey of other, similar systems, is provided by Lua et al.
[2005].

Chord is a distributed application that can be used to efficiently store
and locate data across a huge collection of hosts. Each host is required to
have a unique identifier, represented by an m-bit number. Typically, m =
128, meaning that there can be as much as 2128 ≈ 3.4 × 1038 identifiers.
That’s enough to fill every square millimeter land of the Earth with more
than 2× 1018 hosts. It should suffice for a while. In practice, this means that
when a host needs to join a Chord network, it can simply generate its own
random identifier without running any serious risk that some other host has
generated the same identifier.

A host in a Chord network is assumed to store data. To keep matters
simple, we assume that data is stored in a file, with each file having a unique
key. Like host identifiers, each key is an m-bit number. The fundamental
principle in Chord is that the file with key k is stored on the host with the
smallest identifier id greater or equal to k. Computing if id ≥ k is done in
modulo M arithmetic, where M = 2m.

Note 8.2 (Mathematical language)
Recall that modulo M arithmetic is applied to integer numbers, mapping all
numbers to values between 0 and M− 1. A common notation is k mod M. So,
with M = 32, we would have:

k k mod 32
4 4
31 31
32 0
−5 27
−31 1

To illustrate, consider a Chord network with m = 5, meaning that M =
25 = 32. Suppose we have peers (i.e., hosts) with identifiers 1, 4, 9, 11, 14,
18, 20, 21, and 28. It is convenient to represent this system as a ring, as
shown in Figure 8.6. We simply denote the peer with identifier p as peer

197



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

p. The actual peers are shown as gray-colored circles; the rest of the unused
identifiers are represented by dashed circles. As shown, the peer with id = 1
will be responsible for storing files with key 29, 30, 31, 0, and 1, respectively.
Indeed, in modulo M arithmetic we may have that 1 ≥ 31.
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Peer 9 stores
files with keys
5, 6, 7, 8, 9

Peer 1 stores
files with keys
29, 30, 31, 0, 1

Peer 21 stores
file with key 21

Figure 8.6: The representation of a Chord network as a ring.

The peer responsible for storing a file with key k is called the successor
of k:

Definition 8.1: Consider a file with key k. In a Chord peer-to-peer network, the peer
with the smallest identifier p ≥ k is called the successor of k, denoted as succ(k).

Perhaps a bit confusing, but it is important to note that if p = k, succ(k) = p.
Central to the design of Chord is efficiently looking up data by means

of keys. A naive way of doing a lookup is as follows. Assume that the
peer with identifier p (i.e., peer p) is requested to look up a file with key
k. If p < k, peer p can simply forward the request to its left-hand (i.e.,
clockwise) neighbor in the ring, a process which is repeated until the first
peer is reached, say q, with q ≥ k. Likewise, if p > k, peer p can still simply
forward the request to its left-hand neighbor, until a peer q is found with
the smallest identifier q ≥ k. It is not difficult to see that this search strategy
would, on average, require that a request is forwarded 1

2 n times, where n is
the total number of peers. If n = 10, 000, it would take forever to locate the
file.

A much more efficient approach is to let every peer store “shortcuts” to
other peers at increasingly longer distances. These shortcuts are stored in
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a peer’s partial view, which is called a finger table in Chord. Each finger
table FTp of peer p consists of m entries, numbered 1, 2, . . . , m, and denoted
as FTp[1], . . . , FTp[m]. Entry i contains the successor of key p + 2i−1:

FTp[i] = succ(p + 2i−1).

In other words, entry i contains a shortcut to the peer responsible for key
p + 2i−1. The finger tables for our example Chord network from Figure 8.6
are shown in Figure 8.7.
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3 28
4 28
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2 28
3 28
4 28
5 41 28
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3 28
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Figure 8.7: Finger tables for the peers from Figure 8.6.

Let’s check a few of these finger tables:

• Consider FT4 = [9, 9, 9, 14, 20]. FT4[1] should contain succ(4+ 21−1) =
succ(5). The peer responsible for key 5 is indeed 9. The same holds for
FT4[2] = succ(4 + 22−1) = succ(6) and FT4[3] = succ(4 + 23−1) =
succ(8). Likewise with FT4 = succ(4 + 24−1) = succ(12), the responsi-
ble peer for key 12 is indeed peer 14. Finally, FT5 = succ(4 + 25−1) =
succ(20), which brings us to peer 20.

• For peer 21, we have FT21 = [28, 28, 28, 1, 9]. For the first three entries,
we are seeking the successor peers for 21 + 1, 21 + 2, and 21 + 4, re-
spectively, which is indeed peer 28. FT21[4] = succ(21+ 8) = succ(29),
for which peer 1 is responsible. Finally, FT21[5] = succ(21 + 16) =
succ(37). Because we need to apply modulo 32 arithmetic, we find
that FT21[5] = succ(37 mod 32) = succ(5), which leads us to peer 9.
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It is now not hard to imagine how an arbitrary peer p receiving a request to
look up key k proceeds: it looks in its finger table to identify peer q satisfying

q = FTp[i] ≤ k < FTp[i + 1]

In case p < k < FTp[1], q is selected to be FTp[1]. Likewise, if FTp[m] ≤ k,
q is selected to be FTp[m]. The lookup request is then forwarded to q. This
process is repeated until the request arrives at the peer responsible for k.

Key Initial Lookup path
peer

15 4 4→ 14→ 18
22 4 4→ 20→ 21→ 28
18 20 20→ 4→ 14→ 18

Figure 8.8: Some example lookup paths.

To illustrate, consider the lookup requests from Figure 8.8. Using the
notation k@p to denote that a request for key k is initially issued at peer p,
we have:

15@4: Because FT4[4] ≤ 15 < FT4[5], the request is forwarded from peer 4
to peer FT4[4] = 14. There, we need to apply the rule that p = 14 <
15 < FTp[1], so that the request is forwarded to FT14[1] = 18, where it
reaches its destination.

22@4: For this request, we find that FT4[5] ≤ 22, so that the request is for-
warded to peer FT4[5] = 20. There, key 22 satisfies FT20[1] ≤ 22 <
FT20[2], so that it is forwarded to peer FT20[1] = 21. Again, noting
that p = 21 < 22 < FTp[1], the request reaches its destination peer 28.

18@20: This is a somewhat tricky case. First, note that because p = 20 6< 18,
we cannot forward the request to FTp[1]. Instead, we eventually find
that FT20[5] < 18, so that it is forwarded to peer 4. From there, it is
easy to see that by using the same reasoning as for request 15@4, we
find the remaining path 4→ 14→ 18.

The Chord graph

Now that we have explained the basic principles of Chord, let’s consider
it from a different point of view, namely as graph. It should be clear how
we can represent a Chord network as a (directed) graph: each peer is repre-
sented as a vertex and if peer p has a reference to peer q in its finger table,
we add the arc 〈−→p, q〉. This leads to the graph representation of our example
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Chord network shown in Figure 8.9. Note that we should indeed represent
a Chord network as a directed graph: if p has q in its finger table, this does
not mean that q also has a reference to p.
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11

14

18

20

21

28

Figure 8.9: The representation of the Chord network from Figure 8.7 as a directed
graph.

Of course, Chord networks become interesting when we consider ones
with many peers. Already by looking at a network with 100 peers as shown
in Figure 8.10, we can observe that we may be dealing with a small-world
graph. First, we see that every vertex is joined with a vertex opposite its
own position in the ring. In particular, suppose we would renumber the n
vertices to 1, 2, . . . , n and again use the distance metric

dn
2 (i, j) def

= min{|i− j|, n− |i− j|}

which we introduced in Chapter 7 in the proof of Theorem 7.3. Recall that
this metric measured the distance between vertices along the “outer ring”
of the graph. With dn

2 , we then see that (virtually) every vertex p is joined
with a vertex at roughly distances 1

2 n, 1
4 n, 1

8 n, . . . , 1.
This observation also suggests that the average path length, which corre-

sponds to the average number of vertices to which a lookup request needs
to be forwarded, will most likely be proportional to log2(n). To test this
hypothesis, we can generate a series of Chord networks and compute the
average path length for each of them. Figure 8.11 shows the result for a
series of such networks. The figure also shows a logarithmic function that
can be found using a standard curve-fitting method (see again Note 6.1 on
page 136). As can be observed, not only does the average path length in-
crease logarithmically with the size of the network, it is also relatively small.
Note that the path length has been computed for a directed graph.
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Figure 8.10: A Chord network with m = 28 and n = 100 peers (orientation not
shown).

Note 8.3 (More information)
That the average path length indeed increases only logarithmically can be
proven formally as follows (see also Stoica et al. [2003]).

Theorem 8.1: Consider a Chord network with m-bit identifiers and n peers. The
number of peers that need to be contacted in order to look up a key k is proportional to
log2(n).

Proof. Assume that we issue a lookup request for key k at peer p. Let z be
the peer that immediately precedes succ(k). Assuming that p 6= z, peer p will
forward the request to the closest predecessor of k that p can find in its finger
table. This is exactly the rule stating that the next peer q should satisfy:

q = FTp[i] ≤ k < FTp[i + 1]

Let i be such that z is in the interval [p + 2i−1, p + 2i). What p will do is contact
the first peer q in this interval, which is precisely succ(p + 2i−1). Note that
|q− p| > 2i−1, but at the same time |q− z| ≤ 2i − 2i−1 = 2i−1. In other words,
q lies numerically closer to z than to p, i.e., dM

2 (p, q) > dM
2 (q, z) where M = 2m.

This also means that dM
2 (q, z) < 1

2 dM
2 (p, z). The latter observation is important,
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Figure 8.11: The average path length for a series of Chord networks with m = 28
and increasing number peers.

for it means that each time a request is forwarded, the distance to z measured
according to metric dM

2 is at least halved.
What does this mean after having forwarded the request 2 log2(n) times and

reaching, say, peer r? Considering that we half the distance to z in every step,
we will have a total reduction of ( 1

2 )
2 log2(n) = 2−2 log2(n) = 2log2(n

−2) = 1/n2.
The distance between p and k will be at most 2m, meaning that in 2 log2(n) steps,
the distance between r and z will be at most 2m/n2. Because we are assuming
that peer identifiers and keys are drawn uniformly at random, the probability
that we have chosen a peer identifier from an interval of length L for an n-peer
Chord network, is equal to n× L/2m. In other words, the probability that there
is peer with an identifier between k and r, is equal to n× (2m/n2)/2m = 1/n,
which is negligible for large n. We conclude that the number of peers that need
to be contacted before resolving a lookup request is proportional to log2(n).

Let us take a look at some other properties of Chord networks, starting
with the degree distribution. Because we are dealing with a directed graph,
we should make a distinction between the distribution indegrees and out-
degrees. Consider a Chord network with n = 10000 peers and using m-bit
identifiers. Figure 8.12 shows the histograms for the indegrees as well as
the outdegrees. When it comes to the indegrees, the distribution seems to
follow an exponential curve (note, however, that we are not dealing with
a power-law distribution). This also means that there are a few peers with
many incoming arcs, in turn, meaning that they may need to process many
lookup requests. The outdegrees are more or less symmetrically centered
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around 13.5. As argued by Stoica et al. [2003], each finger table will have
only approximately log2(n) unique entries, which in our example comes
down to log2(10, 000) = 13.3.
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Figure 8.12: The distributions of indegrees and outdegrees for a Chord network
with n = 10000 peers using 28-bit identifiers.

What about the clustering coefficient? To keep matters simple, we drop
the orientation of a Chord network and compute the clustering coefficient
of the corresponding undirected graph for various network sizes. The result
is shown in Figure 8.13. First, compared to an Erdös-Rényi random graph,
we see that the clustering coefficient is very high. Moreover, the clustering
coefficient only slowly decreases when the network grows. Combined with
the fact that the average path length is low, we may indeed conclude that
Chord networks constitute small-world networks.

Random overlay networks

Processes in distributed applications such as Chord apply strict rules for
maintaining partial views, effectively leading to a well-structured overlay.
In contrast, in the case of random overlay networks, also referred to as un-
structured peer-to-peer networks, the goal is keep a high degree of ran-
domness in the partial view. In other words, the goal is to let entries refer to
seemingly randomly chosen peers. In this section, we will take a closer look
at a class of random overlay networks that are constructed through what is
known as gossiping.
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Figure 8.13: The clustering coefficient Chord networks of various sizes using 28-bit
identifiers.

A framework for epidemic-based networks

As said, many unstructured peer-to-peer networks maintain an overlay that
resembles a random graph. There are numerous ways to do this, and in
many cases we see that this maintenance is done using centralized compo-
nents. In other words, special central servers are used assist in maintaining
some form of randomness in the overlay network. A fully decentralized ap-
proach can be achieved by making use of what are known as epidemic pro-
tocols. In an epidemic protocol, a peer (again, meaning a host) uniformly at
random chooses another peer to exchange data with. It’s as simple as that.

More formally, we have the following. Consider a collection of peers P =
{p1, p2, . . . , pn}, each capable of storing a potentially very large collection of
files. Each file f has a version number v( f ) telling how often the file has
changed. To keep matters simple, we assume that each file has exactly one
associated peer own( f ) that is allowed to change that file. Let v( f , p) denote
the version of file f currently stored at peer p, and FS(p) the set of files
stored at p. If f is not stored at peer p, then v( f , p) = 0. It should be
obvious that

∀ f , p : v( f , own( f )) ≥ v( f , p)

The principal goal of an epidemic protocol is to make sure that every update
to a file is disseminated to all peers. To this end, each peer p ∈ P periodically
chooses uniformly at random another peer q ∈ P, and proceeds as follows2:

1. for all f ∈ FS(p): if v( f , p) > v( f , q), then FS(q) ← FS(q) ∪ { f @p},
possibly replacing an older version of f that was stored at q.

2We use the notation “ f @p” to denote the file f as stored at peer p.
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2. for all f ∈ FS(q): if v( f , p) < v( f , q), then FS(p) ← FS(p) ∪ { f @q},
again possibly replacing an older version of f that was stored at p.

Note that after these two steps, both peers p and q have exactly the same set
of files and for each file also the same version. This protocol forms the core
of a scheme that was proposed to maintain replicated databases by Demers
et al. [1987]. It is widely applied in modern distributed systems to efficiently
disseminate information.

Note 8.4 (More information)
Epidemic protocols are extremely efficient when it comes to spreading data. To
see why, consider a collection of n peers in which initially each peer except p1
stores nothing. Peer p1 stores a data item d. Let us first consider two simple
strategies:

1. When peer p contacts q, only if p already stores d and q does not, will p
send d to q. In other words, p pushes data item d to q if p has it stored,
otherwise nothing happens.

2. When peer p contacts q, only if q already stores d and p does not, will q
return d in response to p’s request. In other words, p pulls data item d
from q if p does not yet have it stored, otherwise nothing happens.

We assume that each peer contacts another peer once every T time units. T is
called the cycle time: after T time units we know that every peer has contacted
exactly one, randomly chosen other peer. We therefore also say that a cycle has
completed after T time units. Let ρ+i be the probability that an arbitrary peer
has not yet obtained d after i cycles in the push case, and ρ−i the same probability
but when we apply only a pull strategy.

For the pull case, it is not difficult to see that ρ−i+1 = (ρ−i )2: the peer did not
yet have d in the ith cycle and it contacted another peer who also did not have
d during the ith cycle.

The push case is only slightly more complicated. In order for a peer p to
stay bereft of d, it will have to be contacted only by peers who also do not
have d stored. In other words, none of the peers that had stored d during the
ith cycle should contact p. The probability that one such peer does not contact
p is (1 − 1

n−1 ): it has n − 1 peers to choose from, one of them being p. The
probability that it will contact p is therefore 1

n−1 . If ρ+i is the probability that
a peer will not have seen d up until the ith cycle, we can expect that a fraction
of (1− ρ+i ) will have already stored d. In other words, we can expect a total
of n(1− ρi) peers to have stored d after reaching the ith cycle. None of them
should contact peer p if we want p to stay ignorant of d, leading us to:

ρ+i+1 = ρ+i (1− 1
n− 1

)n(1−ρ+i )
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To get an impression of the speed by which a data item is spread across a net-
work using only the push or pull approach, consider Figure 8.14. We con-
sider a 100,000 node network in which initially only a single peer stores data
item d. Clearly, both approaches show that as soon as the data item has been
sufficiently spread (which happens around cycle 13), dissemination speeds up
tremendously.
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Figure 8.14: An illustration of the speed of epidemic-based dissemination of
data.

Finally, when applying both pull and push when exchanging data, for a
peer to remain ignorant of d, it should neither contact a peer that has stored d,
nor be contacted by a peer storing d. In other words, ρ+−i = ρ+ · ρ−i . Again, we
see that once dissemination has reached a few peers, within only a few cycles
the whole network will know about d.

When dealing with very large networks, epidemic protocols bump into
a practical problem: how can a peer uniformly at random select another
peer? In principle, doing so requires that the selecting peer knows all the
other peers in the network, yet having such complete knowledge is infeasi-
ble. Fortunately, we can take a much simpler approach by again considering
partial views and letting peers exchange entries using an epidemic protocol.
The crucial difference with a normal epidemic protocol is that a peer p now
selects another peer chosen from its partial view. This is best explained by
assuming that each peer is split into two programs that are executed simul-
taneously, called its active part and its passive part, respectively. The two
programs are outlined in Figure 8.15.

Let us first concentrate on the active part of a peer p. We use the notation
PVp to denote the partial view of peer p. As shown, peer p waits for a fixed
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Active part Passive part
repeat

wait T
q← select 1 from PVp
Rp ← select s from PVp
send Rp ∪ {p}\{q} to q
skip
receive Rp

q from q
PVp ← select m from PVp ∪ Rp

q
until forever

repeat
skip
skip
skip
receive Rq

p from any p
Rq ← select s from PVq
send Rq ∪ {q}\{p} to p
PVq ← select m from PVq ∪Rq

p
until forever

(a) (b)

Figure 8.15: The basics of an epidemic exchange of references from partial views.
Each peer consists of an (a) active part and a (b) passive part.

amount of time, after which it selects a peer q from its partial view PVp,
which it will later on exchange data with. This waiting time, or cycle time
as it is called, is the same for every peer. We assume that within a cycle time,
each peer will initiate an exchange with another peer exactly once, albeit that
every peer does this at a different moment. When all peers have finished
such an exchange, we say that a round has completed.

After peer p has selected q, it continues to select s entries from PVp (we
assume s ≥ 1), denoted as the set Rp. This set, extended with a reference to
p itself but always excluding q, is then sent to q. Meanwhile, peer q has been
passively waiting for any incoming message. In our example, it receives
a message from peer p, in particular the set Rq

p. Of course, we have that
Rq

p = Rp ∪ {p}. As with p, peer q will then select s entries from its own
partial view, and send those along with a reference to itself back to p. At
this point, both p and q are in the same state. Conceptually, each first adds
the references received from its peer to its partial view, and then shrinks the
partial view to a fixed size of m entries, bringing it back to the original size.

In our explanation, we have deliberately left open many choices. In-
deed, Figure 8.15 can be considered as a framework for a wide variety of
epidemic-based protocols, as discussed extensively in Jelasity et al. [2007].
For example, should p select a peer q randomly from its partial view, or per-
haps the the peer that has been in its view the longest? Likewise, there are
different choices for selecting the s references to be sent to q: random ones,
the freshest ones, the oldest ones, etc. Finally, we need to decide on how to
shrink the partial view again to its original size. In the following, we will
concentrate one specific protocol that fits this framework, called Newscast.
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Newscast: an epidemic-based peer-to-peer network

Newscast is an epidemic-based network, originally developed to facilitate
large-scale computing on the Internet (see Jelasity et al. [2010] for an up-
dated original description of Newscast). The protocol is extremely simple,
yet shows interesting emergent behavior. We will discuss a slightly simpli-
fied version of Newscast, for which we return to the framework shown in
Figure 8.15. In particular, we have the various parameters set as described
in Figure 8.16.

Issue Policy Description
view size m = 30 Each partial view has size 30
peer
selection

random Each peer uniformly at random selects a peer
from its partial view

reference
selection

random A random selection of s peers is selected from a
partial view to be exchanged with the selected
peer

view size
reduction

random If the view size has grown beyond m, a random
selection of references is removed to bring it back
to size m

Figure 8.16: Parameter settings for the (adapted) Newscast protocol.

Let us first see whether Newscast is indeed capable of producing an
overlay network that resembles a random graph. To start with, we con-
sider the situation that every partial view is initially filled with references
to randomly chosen peers, and then see how the protocol affects the degree
distribution. As in the case of Chord, representing a Newscast network is
done by modeling every peer as a vertex and a reference to peer q as stored
in the partial view of peer p as an arc from p to q. For Newscast, the outde-
gree of every vertex is equal to m, so let’s consider the indegree distribution.
We consider a 10,000-node network. Figure 8.17 shows the distribution for
the initial network and one after 200 rounds. As said, a round is defined as
the situation in which each peer has initiated an exchange with exactly one
other peer. In terms of Figure 8.15(a), a round corresponds to one iteration
of the repeat . . . until loop.

What can be clearly seen from Figure 8.17 is that the degree distribution
changes from being symmetric to fairly skewed, with some peers having a
relatively high indegree. When giving the matter some thought, this should
actually come as no surprise: there is simply a nonzero probability that cer-
tain references to peers are spread across many peers because they are sim-
ply not removed when shrinking a partial view back to its original size m.
By applying other strategies than just randomly selecting peers as we did
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Figure 8.17: (a) The initial indegree distribution of a Newscast network, and (b) the
situation after 200 rounds.
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for Newscast, we can achieve much better distributions (see, e.g., Voulgaris
et al. [2005]).

Let’s take a closer look at the average path length for Newscast net-
works. As with Chord, we take the orientation of the graphs into account,
i.e., we consider the length of paths in the associated directed graph. The
first thing to note is that Newscast networks are not always strongly con-
nected. In other words, there are peers who cannot be reached by any other
peer in the network. However, when conducting a reachability analysis, it
turns out that such peers are few, and completely isolated. We therefore
ignore them and concentrate only on the largest strongly connected compo-
nent, which contains virtually all peers.

Figure 8.18 shows the average path length as the size of the network
increases. In comparison to Chord, we see that the average path length is
considerably smaller (see Figure 8.11). The figure also show the average
path length for a comparable directed ER random graph. As can be seen,
Newscast comes close to what we would expect to see from ER graphs when
considering path lengths.
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Figure 8.18: The average path length for Newscast networks of increasing size.

When it comes to the clustering coefficient, we see the following. Again,
we simplify matters by dropping the orientation in the Newscast graph and
consider its undirected counterpart. Figure 8.19 shows how the clustering
coefficient evolves as the number of peers increases. For comparison, the
figure also shows the clustering coefficient for an ER(n, p) random graph,
where p is taken equal to 30/(n− 1). Recall that for an ER(n, p) graph the
average vertex degree is equal to p(n − 1). For our Newscast graphs, we
have fixed the outdegree to 30, and thus also the average indegree. As a
consequence, for a comparable ER(n, p) graph we’ll have p(n− 1) = 30. In
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Figure 8.19: The evolution of the clustering coefficient in Newscast graphs as the
number of peers increases.

contrast to Chord, we can see that Newscast appears to be much closer to
Erdös-Rényi random graphs than small-world networks.

8.3 The World Wide Web

The Internet is the network that facilitates the undisputable biggest success
of information systems: the World Wide Web, or simply the Web. Started
around the late 1980s as a system to allow end users to easily browse through
documents by means of hyperlinks, it has grown into a gigantic distributed
information system with a virtually uncountable number of documents.
Moreover, the system is in continuous flux: not only is content added and
changed every minute, the number of participating sites that act as sources
of information continues to grow at an exponential pace.

In this section we will explore the Web from the perspective of graphs.
To do so, we first take a look at the basic organization that is needed to
understand how its structure can be analyzed.

The organization of the Web

The Web is essentially organized into a vast number of Web sites. A site is
a logical collection of Web documents with a uniquely associated domain
name, such as, for example, www.distributed-systems.net. Using a site’s do-
main name it becomes possible to access its documents as we explain below.
NetCraft Ltd. reported the existence of close to 75 million active Web sites
in the Fall of 2008. In the Summer of 2008, Google Inc. reported that they
had discovered 1 trillion (i.e., 1012) Web pages! When realizing that many
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documents are not being seen by Google, imagining the actual size of the
Web is virtually impossible.

A site, in turn, is hosted by a Web server or collection of servers. For our
purposes, a Web server can best be thought of as a computer that is used
to return a page. The browser that issued the request, is known as a Web
client. The 75 million sites that were discovered by NetCraft were hosted
on 65 million servers. Each such server essentially operates as shown in
Figure 8.20. A browser issues a so-called HTTP request for a Web page to
the server. HTTP stands for the HyperText Transfer Protocol, the standard
communication protocol used in the Web. Such a request contains the do-
main name of the site, which is uniquely associated with the IP address of
the server hosting the site. Before an HTTP request can be sent, the Web
client first looks up the site’s IP address using its domain name. This can be
done using what is known as the Domain Name System, or simply DNS,
but which we shall not discuss any further here (see, e.g., Albitz and Liu
[2001] or Levien [2005] for further details).

The request as sent to the server contains an exact reference to the re-
quired document (which we describe shortly). The reference is subsequently
processed by the Web server, allowing it to fetch the document from its local
file system or database. At that point, the document is returned to the client.

1.

3.

2.Client machine Server machine Server fetches
document

Browser Web
server

Response

Get document request (HTTP)

Figure 8.20: The basic communication between a Web client and server.

A document, that is, a Web page, may contain a reference to another
document by means of a hyperlink. A hyperlink takes the form of what is
known as a Uniform Resource Locator, or simply URL. To illustrate, con-
sider the following URL:

http://www.distributed-systems.net/main.html

In this case, we have a reference to a Web page stored as the file main.html
on the Web site with domain name www.distributed-systems.net. The addi-
tional “http://” tells us that this page can be accessed, or better, retrieved, by
sending an HTTP request.
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Once a client has received a page, it can fetch other pages through these
URLs. For our purposes, it is important to realize that the combination of
Web pages and the URLs they contain form the essential ingredients for
constructing a graph. In particular, if we represent a page as a vertex, then
clearly every URL contained in that page can be represented as an arc in a
directed graph from that page to the page referenced by the URL. Summa-
rizing, we are dealing with a graph estimated to consist of at least a trillion
vertices and many more arcs.

Measuring the topology of the Web

Retrieving this so-called Web graph is practically undoable, if alone for the
fact that it changes even more quickly than AS peering relationships. Unfor-
tunately, there are several other problems that stand in the way of accurately
measuring how pages link to each other. In this section we will go into fur-
ther details on how the structure of the Web graph can be discovered.

Crawling the Web

In the beginning of the Web, documents were formatted using a relatively
simple markup language: the HyperText Markup Language (HTML). A
markup language is nothing but a series of commands that are inserted in
the main text to tell a browser how it should render pages. For example,
a command such as “<em>” can be used to emphasize a piece of text on a
display. Most important for our purposes, is that a Web page can contain a
reference to another page, such as:

<a href="http://www.distributed-systems.net/main.html/">main page</a>

which tells a browser that if that reference is activated (e.g., by clicking
with a mouse pointer on the text “main page” shown on the display), that
it should fetch the page named www.distributed-systems.net/main.html. Life
would be so much simpler if all references would be so explicit as in this ex-
ample. Unfortunately, discovering how Web pages are linked to each other
turns out to be a bit more complicated. To understand why this is the case,
we need to delve into how the Web structure is actually measured.

A crucial tool for discovering Web structure is a so-called crawler: a
program that automatically fetches pages that are referenced from a given
page. The basic principle of a crawler is shown in Figure 8.21. Starting from
a set of seed pages, it processes a page by extracting the references to other
pages. Each of these references is appended to a list, called the frontier,
reflecting the pages that have been found but not yet inspected. When a
page has been processed, it is stored in a local repository.
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Frontier

Seed
document(s)

Remove reference
from head of list

Fetch page

Extract references;
append to frontier

Store page

Figure 8.21: The principal operation of a Web crawler.

After having processed the seed pages, the crawler removes the refer-
ence that is at the head of the frontier and fetches the referenced page. It
then simply extracts the references again, appending each of them to the
frontier, after which the page is stored locally. It should be clear that in this
way, one should indeed be able to fetch and store all pages that are reachable
from the seed pages. That the repository for crawling and searching needs
to be huge is exemplified by Google’s approach. It has been estimated that
by 2006, Google used approximately 500,000 servers, spread across the In-
ternet (see also Barroso et al. [2003]). However, if we are interested only in
discovering the topology of the Web, pages obviously need not be stored. In
that case, we need “merely” build up a directed graph in which each vertex
represents a fetched page, and every reference is represented by an arc.

As explained by Thelwall [2004] and Liu [2007], there are several difficul-
ties that need to be dealt with. First, modern Web pages are no longer simple
documents formatted in HTML. Instead, they may consist of different parts,
some of which are complete programs (written in, for example, JavaScript).
Finding references in such documents can be close to impossible, certainly if
their creators have deliberately applied techniques to obfuscate references.
Obscuring references is sometimes done on purpose to prevent Web pages
from being indexed.

Second, many Web pages nowadays are not stored statically in file sys-
tems at a server’s site, but are instead constructed and composed dynami-
cally from a database query that is effectively part of the HTTP request. The
problem is aggravated when the server is using programs to completely
generate pages to be returned to the requesting client. As a consequence,
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we see that many references in the returned page are often personalized
(i.e., based on specific information associated with the client), but also that
the same request may return different pages (i.e., pages are also dependent
on when they were requested). Conceptually, this means that the graph that
represents the Web of pages that refer to each other, changes not only be-
cause edges are different all the time, but also because vertices effectively
often exist only once and then disappear again for good.

Thirdly, and related to dynamic Web pages, crawlers need to be aware of
spider traps. In this case, the references returned to a crawler depend on the
order in which the crawler has visited pages from a given site. It may thus
happen that when a crawler has fetched page A and discovered a reference
to page B, that the server hosting B may generate a reference rA to page A
again that is contained in B, but that is interpreted by the crawler as a new
reference (i.e., it fails to recognize that rA refers to A, which it had already
analyzed).

Finally, Web sites may simply install special files that are required to be
read by all crawlers and which specify exactly which parts of the Web site
are not to be inspected by crawlers. Although there is nothing that prevents
a crawler to still inspect those parts, when such behavior is discovered, an
administrator will most likely prevent any traffic from the site from which
the crawler is operating.

Sampling the Web topology

There are other issues that make Web page discovery difficult, but one in
particular is important when focusing on discovery topologies. It will come
as no surprise that being able to fetch all Web pages, and thus building an
accurate Web graph is practically impossible. By the end of 2008, the num-
ber of Web pages that have been discovered and indexed by search engines
(also referred to as the surface Web), is estimated to be approximately 25
billion (i.e., 25× 109). The actual size of the Web is likely an order of mag-
nitude larger. Therefore, to get an impression of any network statistics re-
garding the Web graph, we are forced to consider only a sample. In other
words, to discover certain properties of the Web graph we necessarily need
to resort to collecting a subgraph. The question is how to make sure that
such a subgraph is representative for the structure of the entire Web graph.

To this end, Becchetti et al. [2006] made a comparison between several
crawling strategies. Note that when a crawler collects pages, it appends
the references it finds to the frontier. This opens up several alternatives for
inspecting next pages. In Figure 8.21 we suggested that pages are fetched
from the head of the frontier. This is one common strategy, which leads
to what is known as a breadth-first inspection. What happens is that first
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all seed pages are inspected. When this is completed, the crawler inspects
the pages that are directly linked from the seed pages, that is, at distance
1. Subsequently, the pages at distance 2 from the seed pages are inspected,
and so on.

An alternative approach is not to select the head of the frontier, but to
randomly select a reference from the frontier each time a new page is to be
inspected. Also, one can take the popularity of a page into account, for ex-
ample by considering the number of pages that are know to point to it (i.e.,
the indegree of a page). This latter strategy is closely related to the strategy
followed by Google to determine the importance of a Web page, known as
PageRank [Brin and Page, 1998] .

An important conclusion from their study, is that breadth-first inspec-
tion of pages leads to reasonable subgraphs, provided that these graphs
by themselves are relatively large. For many of their network statistics, it
turned out that a subgraph had to contain approximately 50% of the origi-
nal set of vertices in order to produce representative results. This is actually
quite a dramatic result, as it seems to imply that obtaining a representative
sample of the Web may turn out to be extremely difficult.

And indeed, a recent study by Serrano et al. [2007] shows that there may
be significant differences between various samples. Before we go into de-
tails, let us first consider some important structural properties of a Web sub-
graph. By the latter, we mean a graph that has been obtained by crawling a
substantial number of Web pages and subsequently representing the pages
and links between them as a directed graph.

In their famous study of two crawls of the AltaVista search engine com-
prising a set of over 200 million pages and 1.5 billion links, Broder et al.
[2000] suggested to represent the Web as the bowtie shown in Figure 8.22.
An interesting aspect of their study was that their sample most likely cov-
ered close to 16% of the surface Web at that time, which may be argued to
be large enough to be considered representative.

Broder et al. made a distinction between the following groups of Web
pages:

SCC The Strongly Connected Component (SCC) consists of a group of Web
pages of which the corresponding directed graph is strongly connected.
In other words, between any pair of vertices there exists a directed
path from one vertex to the other.

IN This group of IN pages cannot be reached from any page in the SCC,
but the SCC can be reached from pages in IN. More formally, for every
vertex v ∈ IN and w ∈ SCC, there exists a directed (v, w)-path but no
directed (w, v)-path.
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Figure 8.22: The macroscopic structure of the Web [Broder et al., 2000].

OUT Pages in OUT can be reached from the SCC, but are not part of the
SCC. In particular, this means that for any vertex v ∈ OUT and w ∈
SCC, there exists a directed (w, v)-path, but no (v, w)-path.

TENDRILS A tendril is a collection of pages connected to either IN or
OUT, but whose pages do not belong to either IN, OUT, or SCC. For
example, a tendril TEN connected to IN consists of pages that can be
reached from one or more pages in IN, but any path from a page v ∈
IN to a page in TEN will never lead to a page in SCC. Note that a ten-
dril itself may form a strongly connected component. Furthermore, it
may very well be the case that certain tendrils can be reached from a
page in IN, but also offer a path to a page in OUT, while none of the
pages in that tendril belong to SCC. In this case, the tendril is called a
tube .

DISCONNECTED This group consists of pages that cannot be reached
from any of the other four groups. Typically, these pages are never
found when crawling the Web. Alternatively, if a crawler starts from
a disconnected page, it will never reach any page in IN, SCC, OUT, or
a tendril.

Broder et al. found that there were approximately 44 million pages in IN,
OUT, and all the tendrils. The SCC consisted of roughly 56 million pages,
and a total of some close to 17 million pages were disconnected. If we were
to consider this sample representative for the entire Web, it should be clear
that any crawler can easily miss a substantial part of all available Web pages.
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For example, when the collection of seeds is drawn from OUT, or any of the
tendrils, it will be impossible to reach SCC.

Returning to Serrano et al. [2007], these authors have shown that the se-
lection of seed pages is important when it comes to finding the pages that
matter. In fact, it turns out that even when considering very large samples,
the ratio of pages in IN, OUT and SCC may vary widely. To give an idea
of what we’re dealing with, Serrano et al. considered four different large
samples, of which the characteristic properties are shown in Figure 8.23. In
Figure 8.23(b) we visualize the relative differences between IN, SCC, and
OUT, and compare it to the structure found earlier by Broder et al. The con-
clusion is clear: despite the fact that we may be sampling a very large part of
the Web, it is difficult to conclude that the sample may be representative for
the entire Web graph. Apparently, we have not yet found a valid technique
for representative sampling (see also Cothey [2004]).

Component Sample 1 Sample 2 Sample 3 Sample 4
SCC 56.46% 65.28% 85.87% 72.30%
IN 17.24% 1.69% 2.28% 0.03%
OUT 17.94% 31.88% 11.26% 27.64%
Other 8.36% 1.15% 0.59% 0.02%
Total size 80.57M 18.52M 49.30M 41.29M

(a)

AltaVista

1 2 3 4

(b)

Figure 8.23: Comparing the relative sizes of IN, OUT, and SCC for different Web
subgraphs. (a) The actual figures; (b) Relative comparison. From Serrano et al.
[2007].

Characteristics of Web graphs

Let us now take a look at some of the properties of Web graphs. Various
studies are based on the Stanford WebBase project [Cho et al., 2006], in
which various crawls are being conducted and made available to the public.
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Based on one such crawl, comprising more than 200 million pages, Donato
et al. [2007] analyzed some of the characteristics of Web graphs.

As mentioned, Web graphs are directed: a hyperlink contained in page
A referring to page B, is naturally represented by an arc from vertex A to
B. In the case of vertex degree distributions, it is important to make a dis-
tinction between indegrees and outdegrees. Figure 8.24 shows the indegree
distribution of the Donato et al. WebBase crawl after removing the nodes
with very low indegree. In this case, as we have done before, the nodes
have been ranked in descending order according to their indegree. The y-
axis shows the relative indegree, with the highest indegree labeled as “1.”
We see that this curve again fits a power-law distribution quite reasonably,
which has indeed been confirmed by Donato et al..

10 100 1000 10,000

0.005

0.010

0.050

0.100

0.500

1.000

1

Node ID (ranked according to degree)

R
e

la
ti
v
e

 i
n

d
e

g
re

e

Figure 8.24: The distribution of indegrees of a WebBase crawl, as derived from [Do-
nato et al., 2007].

It is interesting at this point to compare the actual indegree distribution
with the PageRank algorithm that is used to distinguish important pages,
i.e., pages that apparently contain much-wanted information. PageRank is
used in Google and is based on indegrees. In particular, the rank of a page i
is recursively defined as:

rank(i) = (1− d) + d ∑
〈−→j,i 〉∈E

rank(j)
δout(j)

where d ∈ [0, 1) is known as a damping factor. What we see is that the rank of
page i is determined by the page rank of the pages referring to i. Intuitively,
this means that a page is considered important, not only if many other pages
are referring to it, but notably when it is referred to by many other important
pages. It is believed that for PageRank as used in Google, d = 0.85.
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What the optimal value for d should be is unclear, but neither d = 0 or
d close to 1 produces good ranks [Boldi et al., 2005]. As it turns out, there is
only a weak correlation between the rank of a page and its indegree [Pan-
durangan et al., 2006]. In other words, it is not necessarily the case that a
page with a high rank also has a high indegree, and vice versa. On the other
hand, several studies show that if we compute the distribution of PageRank
values, we again find a power-law distribution with scaling exponent 2.1.
Again, we are confronted with the difficulty of drawing strong conclusions
on the structure of the Web graph, even when using apparently reasonable
metrics and sampling techniques.

For the outdegree distribution we observe a very different behavior, as
shown in Figure 8.25. There is not a clear explanation why the outdegree
does not fit a power-law distribution, but one possibility is that links to other
pages need to be provided by the maintainers of Web pages. These main-
tainers may simply not have the patience (or the need) to include many
hyperlinks in their pages.
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Figure 8.25: The distribution of outdegrees of a WebBase crawl, as derived
from [Donato et al., 2007].

Let us now consider some other characteristics of Web graphs. In a study
based on a simple Web crawl from 1998, Adamic [1999] constructed a graph
by considering Web sites instead of pages. In particular, a graph was con-
structed by which vertex A has an arc to vertex B, if there was a Web page
hosted by site A that referred to a page hosted by B. In this way, a graph
was constructed comprising roughly 150,000 vertices (after discarding leaf
vertices, i.e., having degree 1). For the underlying undirected graph, the
average path length was estimated to be 3.1, while the clustering coefficient
was found to be 0.1078. Clearly, we are dealing with a small-world network.

When considering the directed graph, the largest strongly connected
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component (SCC) consisted of approximately 65,000 sites, which is of the
same order as the Web graph examined by Broder et al.. However, Adamic
found an average shortest directed path length of 4.2, whereas Broder et al.
found this to be equal to approximately 16. For the SCC of the latter, the
average shortest path length in the underlying undirected graph was esti-
mated to be 6.83. The difference between these observations may be caused
by considering sites versus pages.
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So far, our applications of graph theory have been taken from fairly tech-
nical communication networks. In these networks, the nodes are generally
formed by computers or other devices. However, graph theory has also
been extensively used to analyze social structures, also known as social net-
works. In a social network, a node represents a social entity, typically a per-
son, an organization, and so on. An edge stands for a specific relationship
between its incident nodes. In contrast to other areas in social sciences in
which it is important to understand what characterizes social entities (e.g.,
by considering their attributes), social network analysis concentrates on the
structure of relationships and tries to explain social phenomena from those
structures. It should come as no surprise that graph theory plays a key role
in social network analysis.

9.1 Social network analysis: introduction

Let us start our discussion with a motivating example to illustrate the appli-
cability of social network analysis. We also briefly consider some historical
background before delving into the specific metrics that are used to analyze
social networks.

Examples

An illustrative example of how social network analysis can be effectively
used is described in [Michael, 1997]. The example has also been used as a
case study in de Nooy et al. [2005] from which we take the results of the
analysis. The case is about a small wood-processing firm in which manage-
ment proposed a new compensation package. This led to a strike, letting
management believe that the communication to the workers had been far
from optimal. They decided to have the social network analyzed. To this
end, the workers were asked to indicate how often and with whom they
discussed the strike. Frequency was measured on a 5-point scale, leading to
a graph in which two people were linked if they frequently talked to each
other. This graph is shown in Figure 9.1.

There are a number of properties that can be derived from this graph
and which can be explained when we take a closer look at the individual
members. First, there are apparently three clusters. The smallest one is
formed by four workers, namely Eduardo, Domingo, Carlos, and Alejandro.
These workers all used Spanish as their first language. Of these, Alejandro
was most proficient in English. In addition, Bob spoke some Spanish, which
most likely contributes to the link with Alejandro. Another cluster is formed
by Frank, Gill, Ike, Mike, Bob, Hal, John, Lanny, and Karl (all represented
as a gray-colored vertex). It turned out that these workers formed a group
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Union negotiators

Utrecht

Bob

Figure 9.1: The relationship between workers on strike in a wood-processing firm.

of younger people, who did not speak that often with the older co-workers.
The latter formed the third cluster, consisting of Norm, Ozzie, Paul, Sam,
Wendle, Xavier, Vern, Ted, Utrecht, Russ, and Quint.

This clustering reflects what is known in sociology as homophily: the
tendency of people to maintain stronger relationships with those who are
similar to themselves.

The two union negotiators, Sam and Wendle, were initially responsible
for proposing and opening the discussion on the new package. However,
by taking a look at the network, it is not difficult to see that neither of them
actually forms an ideal source for initiating communication. Intuitively, Bob
and Norm, and to a certain extent also Alejandro, form the most important
people in this network. And indeed, when management approached Bob
and Norm directly to explain what the new package was all about, within
only short time all workers understood the deal and were willing to negoti-
ate. The strike ended.

Let us consider another example, this time concentrating on the Medici
family. This highly influential and powerful family originated from Flo-
rence where Giovani di Bicci created the Medici Bank, making him one
of the wealthiest men of Florence. His son, Cosimo de’ Medici, contin-
ued along the same path as his father and is considered as the founder of
the Medici dynasty, a dynasty which lasted for approximately 200 years.
Cosimo de’ Medici understood what it takes to get power and stay in power:
make sure that the right people get married to each other. Padgett and
Ansell [1993] analyzed the Medici dynasty during the first half the 1400s,
including an overview of marriages between the Medici’s and other fami-

226



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

lies, leading to the social network as shown in Figure 9.2.

Pucci

Peruzzi

Castellan

Strozzi

Ridolfi

Bischeri Guadagni
Lambertes

Albizzi

Ginori

Tornabuon

Medici

Acciaiuol

Barbadori

PazziSalviati

Figure 9.2: The relation between influential Florentine families in the beginning of
the 15th century.

Following Jackson [2008] we provide a simple analysis of this network.
A serious and in-depth analysis of the actual social relationships is given by
Padgett and Ansell [1993]. For our analysis it is interesting to note that the
Strozzi family not only had more money, but were also better represented
in the local legislature. Nevertheless, the Medici’s eventually became more
powerful. Let’s see what a possible reason could be, by looking at the be-
tweenness centrality. Recall that the betweenness centrality cB(u) of a ver-
tex u is defined as

cB(u) = ∑
x 6=y

|S(x, u, y)|
|S(x, y)|

where S(x, u, y) is the collection of shortest (x, y) paths containing u, and
S(x, y) is the set of shortest paths between vertices x and y. If we normalize
cB(u) by the possible pairs of families that u can connect, i.e., by (n− 1)(n−
2)/2, one can compute that the betweenness centrality for the Medici’s is
equal to 0.522, whereas this value is only 0.103 for the Strozzi’s. Phrasing
this differently, the Medici’s were on more than 50% of all shortest paths in
the network, whereas the Strozzi’s covered only 10%. Indeed, when it comes
to exerting power, the Medici’s were seemingly in a much better position.

Historical background

Although social network analysis sometimes appears to be a novel disci-
pline that recently emerged as another part of the science of networks, it
is, in fact, since long a well-established area of research. Already in the
beginning of the previous century, psychologists were using diagrams to
represent relationships between social entities. An important contribution
was made by Jacob Moreno who introduced the sociogram in the 1930s. In

227



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

a sociogram, an individual is represented by a point, and relationships be-
tween individuals by lines – indeed, a graph. The importance of Moreno’s
sociograms lies in the fact that he suggested that one could derive specific
characteristics from sociograms, like identifying influential people, identi-
fying flows of information, and so on. And indeed, they have proven to be
a powerful tool for discovering structure in social groups. We will return to
one specific use below.

With Moreno’s sociograms, the scene was set for further work in what is
known as sociometry, which is all about quantitatively measuring social re-
lationships. An important concept that arouse was that of a triad. A triad is
a subgraph of a sociogram consisting of three points that could be connected
to each other. Obviously, triads are related to triangles, which we discussed
in Chapter 6. Formally, the distinction between a triad and a triangle is that
in the latter the three vertices are joined with each other. For a triad, this
need not be the case. Triads became important for studying the presence
and evolution of social subgroups. For example, Cartwright and Harary
[1956] developed a theory on social balance in which they considered sub-
groups of at least three individuals, as shown in Figure 9.3.

A B

C

+/-

+/-+/-

Figure 9.3: A triad to be analyzed for social balance.

In this particular case, the relationships between individuals was as-
sumed to be symmetric: if Alice liked Bob, then Bob would also like Al-
ice. If we represent “like each other” with a “+” and “dislike each other”
with a “−,” we can speak of balanced and imbalanced triads as reflected in
Figure 9.4. The important observation here is that a sociogram is used to
analyze a social group as a whole by considering all its members’ perspec-
tives on their relationships simultaneously. In other words, the focus is on
discovering structures within the social group. In this way, one would be
able to make statements about, for example, the stability or balance of an
entire group, and to what extent one could expect that relationships would
change (under the assumption that groups aim for balance). We will return
to this phenomenon later in this chapter.

The idea of focusing on the discovery of global structures through the
analysis of small-scale interactions, such as occurred in triads, led to new
analysis techniques. In particular, researchers became interested in being
able to identify different subgroups. In terms of graphs, this meant that
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A–B B–C A–C B/I Description

+ + + B Everyone likes each other

+ + − I The dislike between A and C stresses the rela-
tion B has with either of them

+ − + I The dislike between B and C stresses the rela-
tion A has with either of them

+ − − B A and B like each other, and both dislike C

− + + I The dislike between A and B stresses the rela-
tion C has with either of them

− + − B B and C like each other, and both dislike A

− − + B A and C like each other, and both dislike B

− − − I Nobody likes each other

Figure 9.4: The possible balanced (B) or imbalanced (I) relations in a triad based on
liking or disliking each other.

techniques needed to be developed that would allow the identification of
components, yet allowing components to sometimes still be connected to
each other. To illustrate, consider our example of the workers at the wood-
processing firm again. Sociologists were interested to see which people ac-
tually formed groups within that community and were able to identify three
of them, as mentioned before. These groups can be more easily visualized
when considering the adjacency matrix of the associated network, as shown
in Figure 9.5(a). For clarity, we omit the names of the workers. A cell (i, j)
is colored black if worker i and j are linked to each other. By simply re-
ordering the rows and columns, we obtain an equivalent matrix, shown in
Figure 9.5(b). This last matrix reveals more strongly than the first one that
there are indeed subgroups among the workers.

Although we have only visualized group boundaries, formal methods
will indeed reveal that such groups can be identified. What we have shown
in Figure 9.5 is known as block modeling, which was one of the earlier
techniques for identifying subgroups. More techniques were eventually de-
veloped to allow for sometimes sophisticated clustering of nodes (see also
Porter et al. [2009]).

It was not until the 1950s that researchers started talking more system-
atically about networks and would start using graph-theoretical concepts
to express structural aspects of networks. The relationship between so-
ciograms and the more rigorous approach implied by the use of mathemat-
ics was thus gradually introduced. However, it would take at least another
decade until the ties between social networks and mathematics had come
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(a) (b)

Figure 9.5: (a) The adjacency matrix of the network from Figure 9.1, and (b) the
same matrix after reordering rows and columns. From [de Nooy et al., 2005].

to substantial strength. Of particular influence was the work by Mark Gra-
novetter on what he called weak ties: links between different social clusters
that proved to be essential for information dissemination, and thus reach-
ing out to other groups than one’s own [Granovetter, 1973]. Understanding
Granovetter’s work required a mathematical approach to social networks.

Social network analysis evolved steadily ever since then, and many rig-
orous techniques have been developed. We have now reached a new point.
As mentioned, sociologists developed various models on how groups of
people organize themselves. One particular famous one is the small-world
organization, which we discussed in Chapter 7. The problem that researchers
faced was how to validate those models: setting up sociological experiments
with many participants is far from trivial as Milgram experienced in the
late 1960s (recall that we discussed Milgram’s experiments in Chapter 7).
With online communities, researchers suddenly have tremendous sociolog-
ical data sets in their hands. As we will also discuss in this chapter, we can
apply similar analyses to these sets not only to validate models of how so-
cial networks evolve or how they are structured, but also to discover new
properties that are inherently tied to the size of a network.

As argued by Kleinberg [2008], it is equally important that the analysis
of these online social communities will perhaps put us in a much better
position to devise large-scale distributed computer systems such as the fully
decentralized peer-to-peer systems discussed in Chapter 8. We are already
seeing better search strategies that are based on grouping peers by a notion
of similarity, and many other phenomena related to social networking.
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Sociograms in practice: a teacher’s aid

Let us consider an example of a sociogram. One particular use of sociograms
is in classrooms allowing a teacher to obtain better insight in the social struc-
ture of the class. In such cases, each child may be asked to list the three
persons he or she likes the most (known as a positive nomination) or the
least (i.e., negative nominations). An example is shown in Figure 9.6, which
is based on material from Sherman [2000]. An entry (i, j) marked “+” indi-
cates that child i liked child j, whereas a “−” indicates that i disliked j.

Sex ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
F 1 � + − − + + −
M 2 − � + + + − −
F 3 � + − − + + −
F 4 � − + + + − −
F 5 + � − + + − −
F 6 − + � + − + −
M 7 + � − + − − +
F 8 + − � + − + −
M 9 + + � + − − −
M 10 + − � − + + −
M 11 + − � + + − −
F 12 + − − � − + +
F 13 + + � + − − −
F 14 + − + − � + −
M 15 + − − � + + −
F 16 + − + � + − −
M 17 − + � + − − +
M 18 − + � − − + +
M 19 − + − + � + −
F 20 − − + − + + �
F 21 − − + + − + �
M 22 − − + − + � +
M 23 − + + − + − �
M 24 + + − − + − �

+ 2 4 1 4 2 1 4 0 1 0 8 8 3 1 4 6 3 0 7 6 0 2 3 2
− 4 2 0 1 0 4 4 0 4 9 1 1 1 2 3 1 2 0 7 6 10 4 3 3

Figure 9.6: Data on the three most liked or disliked classmates.

When considering only the positive nominations, we obtain the social
network shown in Figure 9.7(a). In this case, boys are represented by black-
colored vertices whereas girls are shown as white-colored vertices. We in-
stantly see that the two groups are more or less separated: boys and girls
each tend to form their own subgroup, as is further illustrated after reorder-
ing the adjacency matrix, shown in Figure 9.7(b).

There are other issues that make this an interesting case. For example,
by simply considering the distribution of indegrees, one can get an impres-
sion of the position of certain children. In this case, we should also con-
sider the negative nominations as given by Figure 9.6. We see that children
#11 and #12 are very popular (having very high indegrees for the positive
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Figure 9.7: (a) The sociogram for positive nominations represented as a directed
graph. Boys are represented by black-colored vertices; girls by white-colored ver-
tices. (b) After reordering the adjacency matrix, the two subgroups become more
apparent.
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nominations), whereas #10 and #21 are very unpopular. There is much con-
troversy regarding child #19 (and to a lesser extent #20), who received rel-
atively many positive and negative nominations. There are also neglected
children, namely those who are not mentioned at all (children #8 and #18).

Let us concentrate somewhat more on who is important and who is not
by considering the largest strongly connected component of our classroom
graph. This component consists of all children except #3, #6, #8, #10, #18,
#21, #22, and #24. The eccentricity of a member was defined in Chapter 6
as the maximum distance of that member to any other member. For our
subgroup, we obtain:

Child: 1 2 4 5 7 9 11 12
Eccentricity: 5 6 6 4 7 7 7 5

Child: 13 14 15 16 17 19 20 23
Eccentricity: 6 3 6 5 6 5 4 6

Interestingly, child #14 is closest to any other child, whereas the popular
ones do not really differentiate from the others. When reconsidering Fig-
ure 9.7(a), we can see that child #14 is one of the few children who nomi-
nated a boy (#7) and a girl (#20). To see to what extent a child is close to
every other member of the group, we compute the closeness values:

Child: 1 2 4 5 7 9 11 12
Close: 0.023 0.021 0.018 0.025 0.018 0.018 0.018 0.022

Child: 13 14 15 16 17 19 20 23
Close: 0.018 0.030 0.021 0.021 0.021 0.025 0.025 0.021

However, as we have argued before, closeness may not always be a good
indicator of importance. For example, if child #14 was removed from the
class, how harmful would that be for passing on information? In fact, it
turns out that because #14 is really not that well connected, she also does
not play a crucial role in these matters. Sociologists have introduced be-
tweenness centrality as an indicator for importance. As explained before
and in Chapter 6, this metric takes into account whether or not a vertex is
lying on the shortest path between two other vertices. If we compute the be-
tweenness centrality for each of our group members, we get the following
values:

Child: 1 2 4 5 7 9 11 12
Betweenness: 0.140 0.153 0.050 0.105 0.083 0.007 0.155 0.220

Child: 13 14 15 16 17 19 20 23
Betweenness: 0.016 0.054 0.083 0.140 0.017 0.466 0.469 0.029
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The results are interesting: without doubt children #19 and #20 play crucial
roles when it comes to connecting the two groups of boys and girls, and thus
in passing information between the two subgroups. Indeed, if we would
remove either one from the subgroup, it would fall apart in the sense that
we would no longer have a strongly connected component.

9.2 Some basic concepts

Now that we have given an overview of social networks and a typical ex-
ample of how they can be applied, let’s take a step further and consider
a few of the more important concepts in social network analysis and how
these concepts relate to the theoretical framework offered by graphs. In our
discussion, we largely follow the structure as presented by Wasserman and
Faust [1994].

Centrality and prestige

As we have mentioned, identifying important social entities forms a recur-
ring topic in social network analysis. Up to this point we have introduced
the following metrics to assist in finding those entities:

Vertex centrality: A metric that tells us to what extent a vertex is at the
center of a graph, by considering its maximum distance to all other
vertices. Typically, vertices “at the edge” of the network are generally
considered less influential than those at its center.

Closeness: This metric considers the centrality as measured by the distance
to each other vertex in the graph. The higher the value, the closer a
vertex is to every other vertex.

Betweenness centrality: This important metric defines centrality of a ver-
tex u by considering the fraction of shortest paths that cross u. The
more such paths, the more important u is to be considered.

All of these metrics should be considered with care, as we illustrated in the
previous section with our classroom example. For instance, we saw that
a popular person may not be the one that is most efficient for spreading
information.

Note further that these metrics can be defined for directed as well as
undirected graphs, as they are all based on a notion of distance between
vertices. However, when considering directed graphs, it is useful to make a
distinction between the distance to other nodes (as one would use for mea-
suring centrality), and the distance from other nodes. In particular, if we
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want to indicate the prestige of a vertex u, counting how many other vertices
refer to u as a metric for prestige seems to make sense. In particular, we
have:

Definition 9.1: Let D be a directed graph. The degree prestige pdeg(v) of a vertex
v ∈ V(D) is defined as its indegree δin(v).

One can argue that degree prestige is a rather crude metric as it consid-
ers only direct relationships, namely the vertices that are adjacent to v. A
more subtle way of measuring prestige is to also consider the vertices that
can reach v through a directed path. In sociological terms, these vertices
are called v’s influence domain. In that case, we can compute the average
distance to vertex v of the vertices in its influence domain, leading to the
following definition.

Definition 9.2: Let D be a directed graph with n vertices. The influence domain
R−(v) is the set of vertices from where v can be reached through a directed path,
that is, R−(v) def

= {u ∈ V(D)| exists a (u, v)-path}. The proximity prestige
pprox(v) of a vertex v is defined as

pprox(v) def
=

|R−(v)|/(n− 1)
∑u∈R−(v) d(u, v)/|R−(v)|

where d(u, v) denotes the length of the shortest (u, v)-path in D.

Note that for proximity prestige we consider (1) the fraction of all vertices
that can influence v (and exclude v), i.e., |R−(v)|/(n− 1) and (2) the average
distance of those vertices to v.

Note 9.1 (Mathematical language)
The definition of proximity prestige may not be instantly obvious, for which
reason it is important to make sure that you understand what it means. The
definition is also a good example to illustrate the precision of mathematics over
a more verbal explanation.

First, it is important to realize why we are considering the fraction of in-
fluential vertices, i.e., |R−(v)|/(n− 1). In doing so, proximity prestige can be
expressed independent of the size of a graph, which is obviously an advantage
as it allows us to more easily compare different networks. It should also be clear
why we divide |R−(v)| by n− 1 and not n: because we do not consider a vertex
to be in its own influential domain, there are at most n− 1 vertices who can.

Second, if we are going to consider the fraction of influential vertices, we
should also consider the average distance of those vertices to v and not just
merely the total distance. Again, this method of measurement allows us to
better compare graphs.
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Finally, note that proximity prestige is always a value between 0 and 1. To
this end, we first rewrite its definition to:

pprox(v) def
=
|R−(v)|2/(n− 1)
∑u∈R−(v) d(u, v)

so that we can more easily consider the case where there are no vertices in v’s
influential domain. In that case, |R−(v)| = 0, and so is pprox(v). At the other
end of the spectrum is the situation that we can reach v from every vertex, but
moreover, each one is an in-neighbor of v. We then have that |R−(v)| = n− 1
and ∑u∈R−(v) d(u, v) = n− 1. As a consequence, we see that pprox(v) = 1.

Let’s reconsider our classroom example and take a look at proximity
prestige within the largest strongly connected component. We make the
following assumption: if child i has positively nominated child j, then the
behavior of child j will affect child i. In other words, the directed graph
of positive nominations can be seen as a directed graph of who influences
whom by simply reversing the orientation of each arc. Using this reversed
orientation, Figure 9.8 shows the distance between pairs of vertices, i.e., a
cell (i, j) gives the shortest distance from vertex j to vertex i. These distances
have been computed using the directed graph obtained by reversing the
orientation of the graph from Figure 9.7.

The various values for proximity prestige lie quite close to each other,
but again we see that children #19 and #20 have the highest score. Consid-
ering that these two also had the highest betweenness centrality, the social
picture is becoming consistently clear.

One of the problems that social scientists have been struggling with is
that the metrics we have been discussing so far consider importance with-
out taking into account the importance of the nominating vertex. In partic-
ular, it seems reasonable to rank a person higher when that person has been
nominated by another highly ranked person. Note that this is analogous
to the PageRank metric discussed in Chapter 8. The idea as used in social
networks is quite simple and brings us to the following definition of ranked
prestige:

Definition 9.3: Consider a simple directed graph D with vertex set {1, 2, . . . , n}
with adjacency matrix A (i.e., A[i, j] = 1 if and only if there is an arc 〈−→i, j〉). The
ranked prestige of a vertex k is defined as:

prank(k) def
=

n

∑
i=1,i 6=k

A[i, k] · prank(i)
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Distance from j to i
ID 1 2 4 5 7 9 11 12 13 14 15 16 17 19 20 23 pprox(v)
1 0 4 3 1 4 5 3 1 2 2 3 2 4 2 1 4 0.366
2 4 0 4 5 2 1 2 3 5 6 1 3 3 1 2 2 0.341
4 2 5 0 3 5 6 4 1 1 4 4 1 5 3 2 5 0.294
5 1 5 2 0 5 6 4 2 1 1 4 2 5 3 2 5 0.313
7 5 1 5 6 0 2 1 4 6 7 2 4 2 2 3 1 0.294
9 5 1 5 6 1 0 1 4 6 7 2 4 2 2 3 2 0.294

11 5 1 5 6 2 2 0 4 6 7 1 4 1 2 3 2 0.294
12 1 4 2 2 4 5 3 0 3 3 3 1 4 2 1 4 0.357
13 2 5 1 3 5 6 4 1 0 4 4 1 5 3 2 5 0.294
14 1 4 3 1 4 5 3 2 2 0 3 2 4 2 1 4 0.366
15 4 2 4 5 1 3 2 3 5 6 0 3 2 1 2 1 0.341
16 2 4 1 3 4 5 3 1 2 4 3 0 4 2 1 4 0.349
17 4 2 4 5 3 3 1 3 5 6 2 3 0 1 2 1 0.333
19 3 2 3 4 2 3 1 2 4 5 1 2 2 0 1 2 0.405
20 2 3 2 3 3 4 2 1 3 4 2 1 3 1 0 3 0.405
23 4 2 4 5 3 3 1 3 5 6 2 3 1 1 2 0 0.333

Figure 9.8: Computing the proximity prestige for the classroom example. Each cell
(row, column) denotes the distance from column to row.

Note that in order to compute prank(k), we need to compute the ranked
prestige of every vertex. Fortunately, the above equation is one of a total of n
(one for each vertex), giving rise to a set of n equations in n unknowns. Stan-
dard mathematical techniques can be applied to solve these equations, al-
though for even relatively small values of n, using software packages comes
in handy. To illustrate the principle, let us consider a small social network
with only three people A, B, and C. Each person is asked to give a weight
0 ≤ w ≤ 1 to the other two, expressing the relative preference of one person
over the other. So, for example, if A prefers B over C, she may express this
by assigning a weight of 0.7 to B and 0.3 to C. Likewise, if B has no pref-
erence for either A or C, he should assign a weight of 0.5 to both of them.
Note that the total weight that a person can assign to the others is always
equal to 1. Let’s assume that the weights have been assigned as follows:

ID A B C
A — 0.5 0.4
B 0.1 — 0.6
C 0.9 0.5 —

where we use the same notation as in Figure 9.8: cell (i, j) denotes the weight
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assigned by person j to person i. We now need to solve the following equa-
tions:

prank(A) = 0.5 · prank(B) + 0.4 · prank(C)
prank(B) = 0.1 · prank(A) + 0.6 · prank(C)
prank(C) = 0.9 · prank(A) + 0.5 · prank(B)

To simplify our notation a bit, we use the variables x, y, and z in place of
prank(A), prank(B), and prank(C), respectively. This then leads to:

x = 0.5y + 0.4z (1)
y = 0.1x + 0.6z (2)
z = 0.9x + 0.5y (3)

If we would try to solve this set of equations, we would find only depen-
dencies between x, y, and z. This is caused by the fact that we require that
the sum of the values per column is always 1. In particular, by substituting
(2) into (3), we find that z = 19

14 x. Likewise, by substituting (3) into (2), we
find that y = 32

35 x. It is common practice to ensure that√
∑
(

prank(i)
)2

= 1

which in our example would mean that

x2 +

(
19
14

x
)2

+

(
32
35

x
)2

= 1

which, in turn, leads to:

x = 0.52 y = 0.48 z = 0.71

These values now express the ranked prestige of A, B, and C, respectively.

Note 9.2 (More information)
What we have actually been doing is computing what is known as an eigen-
vector. To explain, let W denote the matrix of nonnegative weights assigned
between n > 1 people, such that W[i, j] is the weight assigned by person j to i.
As in our example, we require that for each person j, ∑N

i=1 W[i, j] = 1 and that
W[j, j] = 0. Let p be the vector of ranked prestiges:

p ≡ (p1, p2, . . . , pn) def
= (prank(1), prank(2), . . . , prank(n))

Using the abbreviation wij = W[i, j], we need to solve the set of equations

w11 p1 + w12 p2 + · · ·+ w1n pn = p1
w21 p1 + w22 p2 + · · ·+ w1n pn = p2

...
...

wn1 p1 + wn2 p2 + · · ·+ wnn pn = pn
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which can be more concisely written in matrix form as
w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

...
wn1 wn2 · · · wnn




p1
p2
...

pn

 =


p1
p2
...

pn


or, equivalently

W · p = p

In mathematical terms, p is the eigenvector that corresponds with the eigen-
value 1. As mentioned above, we generally require that

√
∑(pi)2 = 1, so that

we can often find a unique solution for an eigenvector. For social network anal-
ysis, this eigenvector corresponds to the ranked prestiges.

In general, eigenvectors are computed by first finding solutions to the more
general equation

W · p = λp

with λ being a scalar. Several solutions may exist, each known as an eigenvalue.
In our case, because we demand that ∑i wij = 1, one can show that the largest
eigenvalue is λ = 1. We will not go into this material any further. A good
introduction can be found in [Williams, 2001].

Let us finally see how we can compute the ranked prestige for each of the
children in our classroom example. Again, we concentrate on the strongly
connected component, consisting of 16 children. We need to construct a
matrix that reflects the weight that child j assigns to child i. We follow two
approaches. First, we consider the positive nominations and assign an equal
weight to each nomination given by the same child. In other words, if A has
nominated three other children, we assume that each of these three has the
same influence on A. From Figure 9.8, we can seen that each child within
the strongly connected component nominates exactly three other children
in the same component, so that every weight is equal to 1

3 . In that case, the
ranked prestige turns out to be as follows:

Child: 1 2 4 5 7 9 11 12
Ranked pres.: 0.148 0.171 0.132 0.056 0.123 0.057 0.332 0.369

Child: 13 14 15 16 17 19 20 23
Ranked pres.: 0.062 0.018 0.313 0.332 0.179 0.433 0.434 0.205

Our second approach entails the distance between children. In partic-
ular, reconsider the graph representing the positive nominations shown in
Figure 9.7. We now take the distance from child i to child j (in this graph)
as an indication of the how highly i ranks j. In particular, the larger the

239



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

distance, the lower the ranking. Let M be the maximum eccentricity be-
tween two children in the largest strongly connected component. From our
previous observations, we know that M = 7. If d(i, j) denotes the shortest
distance from child i to j, we define the weight wij that i assigns to j as:

wij
def
=

M− d(i, j)
∑

j∈R−(i)

(
M− d(i, j)

)
Using these weights, we can then compute the ranked prestiges as:

Child: 1 2 4 5 7 9 11 12
Ranked pres.: 0.240 0.253 0.230 0.187 0.238 0.198 0.286 0.282

Child: 13 14 15 16 17 19 20 23
Ranked pres.: 0.195 0.134 0.282 0.279 0.245 0.315 0.311 0.252

Before we come to conclusions, we summarize our findings for the class-
room in Figure 9.9. We also show the normalized values, obtained by di-
viding the measured importance by the found maximum importance for a
specific metric. What we see is that different metrics lead to sometimes very
different results. For example, the relative importance of children #4 and #5
depends on which metric we use: in the case of betweenness #5 is more im-
portant than #4, but this changes when ranked prestige as metric. Further-
more, it appears that ranked prestige generally leads to a greater variation
(which is good). All metrics show the importance of children #19 and #20.

Structural balance

As stated by Wasserman and Faust [1994], a first important result from so-
cial network analysis was the theory of structural balance. The theory con-
siders the sentiment relationships between people within a group, which
are commonly modeled as positive of negative. In particular, the theory is
concerned with examining whether the relationships between people are
such that the group as a whole can be considered stable, or in balance. In its
simplest form, the theory considers triads, that is, groups of three people.
We briefly discussed triads and balance in Section 9.1 and will consider it in
more detail here.

Let us first start with precisely defining balance. To this end, we need
the definition of a signed graph:

Definition 9.4: A signed graph is a simple graph G in which each edge is labeled
with either a positive (“+”) or negative (“−”) sign. We denote the sign of an edge
e as sign(e).
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1 5 (0.714) 0.023 (0.767) 0.140 (0.299) 0.366 (0.904) 0.148 (0.341) 0.240 (0.762)
2 6 (0.857) 0.021 (0.700) 0.153 (0.326) 0.341 (0.842) 0.171 (0.394) 0.253 (0.803)
4 6 (0.857) 0.018 (0.600) 0.050 (0.107) 0.294 (0.726) 0.132 (0.304) 0.230 (0.730)
5 4 (0.571) 0.025 (0.833) 0.105 (0.224) 0.313 (0.773) 0.056 (0.129) 0.187 (0.594)
7 7 (1.000) 0.018 (0.600) 0.083 (0.177) 0.294 (0.726) 0.123 (0.283) 0.238 (0.756)
9 7 (1.000) 0.018 (0.600) 0.007 (0.015) 0.294 (0.726) 0.057 (0.131) 0.198 (0.629)
11 7 (1.000) 0.018 (0.600) 0.155 (0.330) 0.294 (0.726) 0.332 (0.765) 0.286 (0.908)
12 5 (0.714) 0.022 (0.733) 0.220 (0.469) 0.357 (0.881) 0.369 (0.850) 0.282 (0.895)
13 6 (0.857) 0.018 (0.600) 0.016 (0.034) 0.294 (0.726) 0.062 (0.143) 0.195 (0.619)
14 3 (0.429) 0.030 (1.000) 0.054 (0.115) 0.366 (0.904) 0.018 (0.041) 0.134 (0.425)
15 6 (0.857) 0.021 (0.700) 0.083 (0.177) 0.341 (0.842) 0.313 (0.721) 0.282 (0.895)
16 5 (0.714) 0.021 (0.700) 0.140 (0.299) 0.349 (0.862) 0.332 (0.765) 0.279 (0.886)
17 6 (0.857) 0.021 (0.700) 0.017 (0.036) 0.333 (0.822) 0.179 (0.412) 0.245 (0.778)
19 5 (0.714) 0.025 (0.833) 0.466 (0.994) 0.405 (1.000) 0.433 (0.998) 0.315 (1.000)
20 4 (0.571) 0.025 (0.833) 0.469 (1.000) 0.405 (1.000) 0.434 (1.000) 0.311 (0.987)
23 6 (0.857) 0.021 (0.700) 0.029 (0.062) 0.333 (0.822) 0.205 (0.472) 0.252 (0.800)

Figure 9.9: Summary of the importance measures for the classroom example, with
the normalized values shown between brackets.

A signed graph can be undirected or directed. For a signed graph G, we will
use the notation E+(G) to denote the positive-signed edges and E−(G) for
negative-signed edges.

The common interpretation of a positively signed edge between vertices
A and B is that the two people represented by the vertices like each other.
Analogously, a negative sign is to be interpreted as that they dislike each
other. In the case of a signed directed graph, the likeness need not be sym-
metric. If A likes B, then this is represented by a positively signed arc 〈−→A, B〉.
A negatively signed arc from A to B means that A dislikes B. The absence
of an arc (or edge in the case of an undirected graph) implies that two peo-
ple neither like nor dislike each other. In the following, we will concentrate
only on undirected signed graphs.

In Figure 9.4 we discussed how the various combinations of liking and
disliking between people in a triad would lead to an (im)balanced situation.
It can be readily seen that the balanced situation of a triad occurs if and
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only if there are zero or an even number of negative signed edges. This
observation is generalized as follows:

Definition 9.5: Consider an undirected signed graph G. The product of two signs
s1 and s2 is again a sign, denoted as s1 · s2. It is negative if and only if exactly
one of s1 and s2 is negative. The sign of a trail T is the product of the signs of its
edges: sign(T) = Πe∈E(T)sign(e).

Note that the effect of multiplying signs can be easily understood if we sub-
stitute +1 for “+” and −1 for “−.”

Note 9.3 (Mathematical language)
By now, you should be used to the fact that from time to time new mathematical
symbols find their way into the text. In the previous definition, we have used
the symbol “Π” as an abbreviation for multiplication, analogously to using the
summation sign “∑.” In particular, we have

Πn
i=1xi

def
= x1 × x2 × · · · × xn

Note 9.4 (Mathematical language)
The definition of the product of a sign is a crude example of how mathemati-
cians define what are known as (abstract) algebras. Algebras tell us how we
can manipulate concepts such as signs, by providing basic rules concerning, for
example, addition or multiplication. In the case of signs, we are interested only
in multiplications. Adding more precision, we could have also included the
following rules:

Commutative: s1 · s2 = s2 · s1

Associative: (s1 · s2) · s3 = s1 · (s2 · s3)

Note furthermore that the sign I = “+” acts as an identity, i.e., for all signs s,
we have that I · s = s · I = s. This same role of identity is played by the number
“1” in our usual numbering systems.

A path (or cycle) is positive if it has zero or an even number of negative-
signed edges. A negative-signed path (or cycle) is one that is not positive.
We leave it as an exercise to prove the following theorem:

Theorem 9.1: Consider an undirected signed graph G. For any trail T of G and
e ∈ E(T), sign(T) = sign(e) · sign(T − e).

With these definitions at hand, we can now consider when sociograms that
are represented as signed graphs are balanced:
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Definition 9.6: An undirected signed graph is balanced when all its cycles are
positive.

An important characterization of a balanced graph is that its vertex set
can be partitioned into two subsets such that all edges between the two
subsets have negative sign, and no other edges. In other words, a group of
people is balanced if it can be split into two subgroups such that members of
the same subgroup like each other, yet members of different groups dislike
each other (or don’t care). This characterization was formally proven by
Harary [1953], and is formalized by the following theorems.

Theorem 9.2: An undirected signed complete graph G is balanced if and only
if V(G) can be partitioned into two disjoint subsets V0 and V1 such that each
negative-signed edge is incident with a vertex from V0 and one from V1, and each
positive-signed edge is incident with vertices from the same set. In other words:

E−(G) = {〈x, y〉|x ∈ V0, y ∈ V1}
E+(G) = {〈x, y〉|x, y ∈ V0 or x, y ∈ V1}

Proof. Assume that G is balanced. Let u ∈ V(G) and let N+(u) consist of
all vertices adjacent to u through a positive-signed edge. Set

V0 ← {u} ∪ N+(u) and V1 ← V(G)\V0.

Consider two vertices v0, w0 ∈ V0, other than u. Because the edges 〈u, v0〉
and 〈u, w0〉 have positive signs, and because G is balanced, we must also
have that 〈v0, w0〉 has a positive sign (note that edge 〈v0, w0〉 exists because
G is a complete graph). Likewise, consider any two vertices v1, w1 ∈ V1.
Again, because G is balanced, we know that the triad with vertices u, v1, w1
must be positive, and because edges 〈u, v1〉 and 〈u, w1〉 have negative signs,
edge 〈v1, w1〉 must have a positive sign. Finally, consider the edge 〈v0, v0〉,
which is part of the triad with vertices u, v0 and v1. With the sign of 〈u, v0〉
being positive and that of 〈u, v1〉 negative, and G being balanced, edge
〈v0, v1〉 must have a negative sign. We conclude that V0 and V1 partition
V(G) as required.

Conversely, assume that E−(G) and E+(G) satisfy the stated conditions.
Every cycle in G contains an even number of edges from E−(G), implying
that the sign of every cycle is positive. By definition, G is balanced.

Note 9.5 (Study tip)
The proof of Theorem 9.2 is much easier to understand when using a drawing.
As mentioned before, studying graph theory generally requires you to visualize
situations by sketching graphs. Do the same for this proof.
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We leave it as an exercise to show that every subgraph of a balanced signed
graph is again balanced. We will need this property for the following theo-
rem:

Theorem 9.3: Consider an undirected signed graph G and two distinct vertices
u, v ∈ V(G). G is balanced if and only if all (u, v)-paths have the same sign.

Proof. First assume that G is balanced. Let P and Q be two distinct (u, v)-
paths. Consider the set of edges E′ obtained from P and Q after removing
the ones they have in common, that is

E′ =
(
E(P) ∪ E(Q)

)
\
(
E(P) ∩ E(Q)

)
.

What can we say about the subgraph H induced by E′? First note that
there can be no cycles having edges in common. If that were the case,
those common edges would have been part of both P and Q, which by
construction cannot happen. In other words, any two cycles in H have no
edges in common. Because H is a subgraph of G, it must also be balanced.
As a consequence, all cycles in H are positive. Furthermore, each cycle C
in H consists of exactly two subpaths P̂ from P and Q̂ from Q. That is,
E(C) = E(P̂) ∪ E(Q̂). Because P̂ and Q̂ have no edges in common, and be-
cause sign(C) = sign(P̂) · sign(Q̂) is positive, we conclude that the signs of
P̂ and Q̂ must be the same. Taking all cycles of H into account, along with
the edges common to both P and Q, we conclude that P and Q must have
the same sign.

Conversely, assume that (u, v)-paths have the same sign. Because u and
v have been chosen arbitrarily, and because every cycle C can be constructed
as the union of two edge-disjoint paths P and Q, we necessarily have that
sign(C) = sign(P) · sign(Q) must be positive. Hence, G is balanced.

Combining theorems now allows us to prove the following general char-
acterization of balanced signed graphs, again due to Harary [1953].

Theorem 9.4: An undirected signed graph G is balanced if and only if V(G) can
be partitioned into two disjoint subsets V0 and V1 such that the following two con-
ditions hold:

(1) E−(G) = {〈x, y〉|x ∈ V0, y ∈ V1}
(2) E+(G) = {〈x, y〉|x, y ∈ V0 or x, y ∈ V1}.

Proof. First, let us assume that G is balanced. Without loss of generality, we
also assume that G is connected. The theorem is proven to hold by induc-
tion on the number m of edges of G. Clearly, the theorem is seen to hold
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for the case that m = 1, so assume it holds for m > 1. Consider any two
nonadjacent vertices u and v of G. From the previous theorem, we know
that all (u, v)-paths have the same sign. Therefore, extend G by adding the
edge e = 〈u, v〉 with the same sign as any (u, v)-path in G, leading to the
new graph G∗ = G + e. Any newly introduced cycle C in G∗ will consist
of e and a (u, v)-path P from G. Because sign(C) = sign(e) · sign(P), and
sign(e) = sign(P), C must be positive, and thus the extended graph is also
balanced. Continue in this way with adding edges between nonadjacent
vertices until we have a signed complete graph G∗∗, which we know is bal-
anced. From Theorem 9.2, it follows that we can partition the vertex set of
G∗∗, and thus also G into the two required subsets.

Conversely, assume we can partition G into two subsets V0 and V1 as
described. Extend G by adding an edge e = 〈u, v〉 between two nonadjacent
vertices, leading to G∗ = G + e. If u and v lie in the same subset, sign(e)
becomes positive, otherwise negative. Continue in this way adding edges
until we have a signed complete graph G∗∗. Again, from Theorem 9.2 we
know that this graph is balanced, and because G is a subgraph of G∗∗, we
know G is also balanced.

With this characterization, it is now relatively easy to check whether a
signed graph is balanced. The following algorithm will do the trick.

Algorithm 9.1 (Balanced graphs): Consider an undirected, connected signed graph
G. For any vertex v ∈ V(G), denote by N+(v) the set of vertices adjacent to v
through a positive-signed edge, and by N−(v) the set of vertices adjacent through
a negative-signed edge. Let I be the set of inspected vertices so far.

1. Select an arbitrary vertex u ∈ V(G) and set V0 ← {u} and V1 ← ∅. Set
I ← ∅.

2. Select an arbitrary vertex v ∈ (V0 ∪V1)\I. Assume v ∈ Vi.

• For all w ∈ N+(v) : Vi ← Vi ∪ {w}.
• For all w ∈ N−(v) : V(i+1) mod 2 ← V(i+1) mod 2 ∪ {w}.
• Also, I ← I ∪ {v}.

3. If V0 ∩ V1 6= ∅ stop: G is not balanced. Otherwise, if I = V(G) stop: G is
balanced. Otherwise, repeat the previous step.

Note 9.6 (Mathematical language)
For the previous algorithm we have used a concise notation that may require
some effort to understand:

V(i+1) mod 2 ← V(i+1) mod 2 ∪ {w}.
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Note that we have assumed that the arbitrarily selected vertex v is in set Vi. As
a consequence, when v ∈ V0, V(i+1) mod 2 is equal to V1, whereas for v ∈ V1, we
see that V(i+1) mod 2 is equal to V2 mod 2 = V0. In other words, V(i+1) mod 2 refers
to the other set than the one containing v.

To see why this algorithm is correct, first note that if may be possible for
a vertex to be added to V0 and later also to V1 (or vice versa). Whenever
this happens, we will not be able to partition the vertex set anymore as is
required for a signed graph to be balanced. In step 3, we will decide to stop
inspecting (uninspected) vertices from V0 ∪V1 if the two sets are not disjoint
anymore, or until each vertex has been placed in either V0 or V1, at which
point it must be the case that V0 ∩V1 = ∅, so that G is indeed balanced.

Cohesive subgroups

Given a social network, researchers have always been keen on identifying
groups of closely bound people, or better known as cohesive subgroups.
Typical examples of such groups in practice are formed by families and
friends. More recent, interest has grown in identifying groups of, for ex-
ample, terrorists. And although it seems naturally evident what a cohesive
subgroup actually entails, formalizing the concept in graph theory such that
it matches what one expects in real life is less obvious. Let us take a look at
a few proposals (see also [Mokken, 1979]).

One of the earliest proposals for modeling cohesive subgroups was to
consider (maximal) cliques:

Definition 9.7: Consider an undirected simple graph G. A (maximal) clique of G
is a complete subgraph H of at least three vertices such that H is not contained in a
larger complete subgraph of G. A clique with k vertices is called a k-clique.

Note that a graph can have several cliques. Consider, for example, the graph
in Figure 9.10. In this case, we see that there are two cliques: the 3-clique in-
duced by the set of vertices {2, 4, 5} and the 4-clique induced by {1, 2, 3, 5}.
This example also shows that a vertex may be contained in two different
cliques.

The problem with using cliques as a means for modeling cohesive sub-
groups is that they are generally too restrictive. In the first place, many
subgroups exist in reality in which not all members relate to each other.
In terms of graphs, this means that that a subgroup cannot always be ad-
equately represented by a complete subgraph. Related to this strictness is
that by considering only cliques, it turns out that only small subgroups can
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Figure 9.10: A graph with two maximal cliques.

be identified. Considering that in many cases sociograms are based on ques-
tionnaires in which people are asked to identify their k best relations, we
also see that the degree of a vertex can never be more than k, and thus that a
maximal clique can have only k + 1 members. With such restrictions, it may
even be impossible to identify any clique.

For these reasons, researchers have been looking for other metrics for
defining subgroups. One approach is to relax how strong the bonds be-
tween members of a subgroup should be. In particular, one can also de-
fine a subgroup as the maximal subgraph in which the distance between its
members is less or equal to a constant k. This leads to what are known as
k-distance-cliques:

Definition 9.8: Let G be an undirected simple graph. A k-distance-clique of G
is a maximal subgraph H of G such that for all vertices u, v ∈ V(H), the distance
dG(u, v) ≤ k.

(We have introduced this term to avoid confusion with k-cliques. Note,
however, that k-distance-cliques are often also referred to as k-cliques [Scott,
2000; Wasserman and Faust, 1994].) It is important to note that the distance
between two vertices in a k-distance-clique is measured relative to the orig-
inal graph G, as is indicated by the notation dG(u, v). This means that two
vertices u and v in a k-distance-clique H may be connected through a short-
est path in H that is longer than a shortest (u, v)-path in G. This implies that
the diameter of a k-distance-clique may be larger than k, which is somewhat
counter-intuitive. Another problem with k-distance-cliques is also caused
by the fact that distance is measured with respect to the original graph: it
is possible to construct a graph in which a k-distance-clique may be discon-
nected (see exercises). To ensure that the diameter of a subgraph matches
one’s intuition, Mokken [1979] proposed k-clans:

Definition 9.9: Let G be an undirected simple graph. A k-clan of G is a k-distance-
clique H of G such that for all vertices u, v ∈ V(H), the distance dH(u, v) ≤ k.
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The only, yet important, difference with k-distance-cliques is that distance
is measured relative to H instead of G. By definition, every k-clan is also
a k-distance-clique. If we take the diameter as the sole criterion, we obtain
what are known as k-clubs:

Definition 9.10: Let G be an undirected simple graph. A k-club of G is a maximal
subgraph H of G such that diam(H) ≤ k. In other words, max{dH(u, v)|u, v ∈
V(H)} ≤ k.

We will show that every k-clan of a graph G is also a k-club of G. However,
not every k-club is also a k-clan, as can be seen from Figure 9.11. In this
example, we have two 2-distance-cliques: H1 = G[{1, 2, 3, 5, 6}] and H2 =
G[{2, 3, 4, 5, 6}]. H2 is also a 2-club, as well as a 2-clan. In addition, both
H3 = G[{1, 2, 5, 6}] and H4 = G[{1, 2, 3, 6}] are 2-clubs, but neither are 2-
distance-cliques, and thus are not 2-clans.

2 3

4

6

1

5

Figure 9.11: Graph illustrating cliques, clans, and clubs.

Now consider a k-club H of a graph G. Because for all vertices u, v ∈
V(H), we know that dG(u, v) ≤ dH(u, v) ≤ k, H must be contained in a
k-distance-clique of G. We use this property to prove the following:

Theorem 9.5: Every k-clan of a graph G is also a k-club.

Proof. From the definitions of k-clan and k-club, one can easily see that for
a k-clan H we certainly have that for all vertices u, v ∈ V(H), dH(u, v) ≤ k.
Therefore, we merely need to show that H is also maximal with respect
to the definition of a k-club. To this end, assume that H is not maximal.
This means that there is a set of vertices S ⊂ V(G)\V(H) such that for all
u ∈ V(H) and s, t ∈ S, we have:

dG(u, t) ≤ dH∗(u, t) ≤ k and dG(s, t) ≤ dH∗(s, t) ≤ k

where H∗ = G[V(H) ∪ S]. However, because H is also a k-distance-clique,
this would violate the maximality of H as a k-distance-clique, contradicting
our assumption of the existence of S. Hence, H is also maximal as a k-club,
completing the proof.
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The real problem with these definitions is that all of them are still very
strict when it comes to selecting whether a vertex belongs to a group or not.
In reality, cohesiveness of a group is much more fuzzy: if Alice considers
Bob to be her best friend, it may very well be the case that Bob’s best friend
Chuck is considered by Alice to be just an acquaintance of her. In other
words, we would normally present a link between Alice and Chuck, but the
meaning is different than the one between Alice and Bob. Such relationships
can be captured through weighted graphs, but the definitions of cohesive
groups do not cater for such situations.

In the same light, we could consider an alternative formulation of k-
cliques by defining a group based on the minimal degree of each vertex:

Definition 9.11: Let G be an undirected simple graph. A k-core of G is a maximal
subgraph H of G such that for all vertices u ∈ V(H), the degree δ(u) ≥ k.

In other words, each vertex in a k-core is joined with at least k other mem-
ber of that group. Again, it turns out that such a definition is often just
too strict: it draws boundaries around groups that cannot account for the
natural “exceptions to the rule.”

A much better approach is to follow data-clustering techniques for iden-
tifying communities. As reported by Porter et al. [2009], a large variety of
older and newer techniques have been proposed leading to much better re-
sults. Let us discuss one such method, known as clique percolation [Palla
et al., 2005].

Clique percolation is based on identifying groups based on maximal
cliques, yet with the important difference that groups may overlap. In other
words, vertices may belong to different cliques without the necessity of hav-
ing a maximal degree (as defined by the size of the clique it is member of).
We can then define a k-clique community:

Definition 9.12: Let G be an undirected simple graph. Two k-cliques C1 and C2
are said to be adjacent if they have at least k − 1 vertices in common: |V(C1) ∩
V(C2)| = k − 1. A k-clique community of G is a union of k-cliques C =
{C1, . . . , Cn} such that for every two k-cliques Cu, Cv ∈ C, there is a series [Cu =
Cu0 , Cu1 , . . . , Cum = Cv] in which Cui and Cui+1 are adjacent k-cliques of C.

This definition is best understood by taking a look at an example. Let’s
consider our social network of Figure 9.1, which we show again in Fig-
ure 9.12 along with the various 3-cliques and single 4-clique. Note that in
this example there are no k-cliques for k ≥ 5. What can we say about the
adjacency of cliques? First, it is not difficult to see that our single 4-clique,
denoted C1, is not adjacent to any other clique for the simple reason that it
does not have a single vertex in common with any one of them. Likewise, if
we consider 3-cliques C7 and C8, we see that Sam is member of both of them.
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However, because Sam is the only member that is shared between the two
cliques, they are not considered to be adjacent: two 3-cliques are adjacent
only if they share two vertices. For the same reason, we see that 3-cliques
C8, C9, and C2 are not adjacent to any other clique.

Wendle

Sam

Xavier

Vern

Ted
Russ

Quint

Paul
Norm

Ozzie

Karl

Lanny

John

Gill

Frank

Ike

Mike

Domingo

Eduardo

Carlos
Alejandro

Hal

Utrecht

Bob

C7

C4

C3

C5 C6

C9

C8

C1
C2

Figure 9.12: The social network from Figure 9.1, showing the various k-cliques.

The story is different for cliques C3 and C4: because V(C3) ∪ V(C4) =
{Hal, John}, the two are adjacent. In fact, C3, C4, C5, and C6 form a 3-clique
community, as shown in Figure 9.13. We see that besides C3 and C4 that also
C4 and C5, as well as C5 and C6 are pairs of adjacent 3-cliques. The result
is that using this method of identifying cohesive groups, we find ourselves
dealing with six communities: {C1}, {C2}, {C3, C4, C5, C6}, {C7}, {C8}, and
{C9}.

C3 C4 C5 C6

C3 — {Hal, John} C3−C4−C5 C3−C4−C5−C6
C4 {Hal, John} — {Bob, John} C4−C5−C6
C5 C3−C4−C5 {Bob, John} — {Lanny, John}
C6 C3−C4−C5−C6 C4−C5−C6 {Lanny, John} —

Figure 9.13: A 3-clique community. Every entry shows either the intersection be-
tween two adjacent 3-cliques, or the path of 3-cliques between two nonadjacent
cliques.
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Note 9.7 (More information)
Palla et al. [2007] have extended clique percolation to directed graphs. In the
undirected case, a clique represents a maximal group in which all vertices are
considered equally important. In a directed graph, we need to account for the
fact that relations are no longer symmetric, but that they reflect some ordering
between vertices. For this reason Palla et al. have been looking for an ordering
of the vertices in their definition of a directed k-clique. In the following, we use
the notation u ≺ v to indicate that vertex u precedes vertex v in an ordering of
vertices.

Definition 9.13: Consider a directed graph D. A directed k-clique is a directed
subgraph H with k vertices such that (1) the underlying graph of H is complete, and
(2) there is an ordering of the vertices of H, such that if u ≺ v then 〈−→u, v〉 ∈ A(H).

To illustrate, consider directed acyclic graphs, which we encountered in Chap-
ter 3. In this case, for a directed clique H, a natural ordering of vertices can be
found by considering the outdegree of each vertex. In particular, u ≺ v if u’s
outdegree (in H) is larger than v’s. It can be shown that in this case such an
ordering always exists. To illustrate, Figure 9.14 shows how we can come to
such an ordering a directed acyclic graph.

1(4)

2(2)

3(0) 4(1)

5(3)

Position Vertex 〈−→u, v〉 ∈ A?

1 1 〈−→1, 5〉 ∈ A
2 5 〈−→5, 2〉 ∈ A
3 2 〈−→2, 4〉 ∈ A
4 4 〈−→4, 3〉 ∈ A
5 3 irrelevant

(a) (b)

Figure 9.14: (a) A (complete) directed acyclic graph. The outdegree of each
vertex is shown as well. An ordering of the vertices is shown in (b).

To examine directed subgraphs in which two vertices u and v are mutually
joined (i.e., both 〈−→u, v〉, 〈−→v, u〉 ∈ A(H)), we merely need to remove one the arcs
from either u to v or from v to u. In many cases, the remaining subgraph will
be acyclic, in which case we can use the ordering based on a vertex’s outdegree.
There may also be cases in which an ordering cannot be found, meaning that
we are not dealing with a directed k-clique.

Again, two directed k-cliques are considered adjacent if they share k− 1 ver-
tices. Then, using these definitions, it turns out that for our classroom example
shown in Figure 9.7(a), the directed critical percolation method will find exactly
two directed 3-communities: one consisting of all the girls, and one consisting
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of all the boys. None of the methods we have discussed so far would have been
capable of coming to such an identification of subgroups. Further information
on critical percolation for directed graphs can be found in [Palla et al., 2007].

Affiliation networks

As a last example of important concepts in social networks, we consider
what are known as affiliation networks [Wasserman and Faust, 1994; Knoke
and Yang, 2008]. In such a network, people are tied to each other through
a membership relation. For example, Alice and Bob may be member of the
same sportsclub, or are both member of the same management team. In
general, affiliation networks are constructed from a set of actors and a set
of social events, where each actor is said to participate in one or several
events. An affiliation network can be naturally represented as a bipartite
graph, with each vertex representing either an actor or an event. An edge
represents the participation of an actor in a specific event.

Affiliation networks have been studied for a variety of reasons, but two
are particularly important for our discussion [Wasserman and Faust, 1994].
First, it is argued that there is a lot of information to discover between indi-
viduals by considering the events that they share, and likewise, correlation
between events can be discovered by considering the shared participation
by actors. In other words, the indirect relationship between individuals that
is caused by the events they share is an important object of study, and the
same holds for the indirect relationship between two events caused by indi-
viduals participating in both events.

The second reason is that sociologists believe that participation in com-
mon events helps to explain the existence of ties between two individuals.
For example, it is believed that influence patterns are established by the fact
that people participate in shared events. As a consequence, understanding
how information is diffused, or how innovations are adopted, may require
an understanding of shared events between people.

Because affiliation networks consist of two different sets, they are also
referred to as two-mode networks. However, when considering the two
main reasons for studying them, we see that they are effectively used to
study the (indirect) relationships between individuals or events. This brings
us back to our original conception of social networks, now referred to as
one-mode networks.

Let us first consider the adjacency matrix representing an affiliation net-
work. Let VA denote the set of vertices representing the actors, and VE
the set representing events. We consider only the (actor, event) submatrix
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AE consisting of nA = |VA| rows and nE = |VE| columns. Clearly, we
have that AE[i, j] = 1 if and only if actor i participates in event j. Further-
more, ∑i∈VA

AE[i, j] tells us how many actors participate in event j, whereas
∑j∈VE

AE[i, j] tells us in how many events actor i participates.

e2

a2

e3

a3 a4a1

e1

a5

e1 e2 e3
a1 1 1 0
a2 1 0 0
a3 0 1 0
a4 0 1 1
a5 0 1 1

Figure 9.15: An example affiliation network with adjacency submatrix.

Let us consider the simple affiliation network shown in Figure 9.15, along
with its adjacency submatrix. Now consider the following sum:

NE[i, j] =
nE

∑
k=1

AE[i, k] ·AE[j, k]

Note that AE[i, k] ·AE[j, k] = 1 if and only if both actors i and j participated
in event k. In other words, NE[i, j] counts the number of events in which
both actor i and j participated. Likewise, we can compute:

NA[i, j] =
nA

∑
k=1

AE[k, i] ·AE[k, j]

in which case we are counting the number of actors participating in both
event i and j. Note that AE[k, i] · AE[k, j] = 1 if and only if actor k partici-
pated in both events i and j. The values for these two tables are shown in
Figure 9.16. Of course, for both tables we have:

NE[i, j] = NE[j, i] and NA[i, j] = NA[j, i]

Furthermore, it is not difficult to see that NE[i, i] = δ(ai) and NA[i, i] =
δ(ei).

How does this work in practice? In 2006 a major Dutch newspaper con-
ducted an investigation to identify the most influential people within the
Netherlands [Dekker and van Raaij, 2006]. The research was inspired by
a statement in 1968 by Jan Mertens, at the time a union leader, that the
Netherlands was effectively governed by approximately 200 people. Since

253



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

NE a1 a2 a3 a4 a5
a1 2 1 1 1 1
a2 1 1 0 0 0
a3 1 0 1 1 1
a4 1 0 1 2 2
a5 1 0 1 2 2

NA e1 e2 e3
e1 2 1 0
e2 1 4 2
e3 0 2 2

Figure 9.16: The matrices NE and NA from Figure 9.15.

2006, identifying the top-200 most influential people has become a yearly re-
turning event, with the not perhaps so surprising result that the top hasn’t
changed a lot. The core of the work is centered around a two-mode net-
work, for which the technical setup and analysis is described in de Nooy
[2006]. Actually determining which people are the most influential cannot
be done by interpretation of raw network data. Instead, several metrics that
have been described so far have been adjusted to more realistically reflect
relationships. For example, rather than taking the distance as the length d
of a shortest path, it was taken proportional to 2d.

For our purposes, we take a simple approach and merely consider the
largest connected component of the two-mode network of approximately
200 people. This leads to an affiliation network representing 197 actors and
391 events. An event is typically a board of directors, a supervisory board,
etc. The graph is shown in Figure 9.17 where people are represented by
boxes and events by circles.

Of course, by merely looking at this graph it is already very difficult to
draw any conclusions. However, when we consider the matrices NE and
NA, we see that more than 1250 pairs of actors share at least one event
that both participate in. In particular, there is not a single actor who does
not participate in at least one event with another actor. In fact, there are
a number of actors who participate in at least three same events. When
we take a look at the matrix NA we see that there is hardly any event for
which its participants do not participate in another event. Apparently, it is
common for the top to participate in at least two events. There is even a
pair of events with as much as nine actors in common. One could argue
that in such cases, participating in one event implicitly means that you’ll be
participating in the other as well.

9.3 Equivalence

So far, we have essentially been concentrating on identifying the properties
of a specific person, or a group of persons, in a social network. An impor-
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tant, yet sometimes difficult question is identifying the position or role that
someone has. For social networks, answering such a question is related to
identifying similarity between (groups of) people based on the structure of
the network or structure of subnetworks. In this section, we will take a
closer look at three related concepts that have been used for this purpose.

Structural equivalence

Consider the situation that in a social network two people, or actors A and
B, have exactly the same relationships to the other actors in the network. In
other words, if A is linked to C, then so is B, and if there is no link between
A and D, then there is also no link between B and D. From the perspective
of the network, you can argue that A and B are essentially indistinguish-
able: they apparently play the same role. This notion of similarity has called
structural equivalence, first formally defined by Lorrain and White [1971]:

Definition 9.14: Let D be a directed graph. Two vertices u and v are structurally
equivalent if their respective sets of in-neighbors and out-neighbors are the same:
Nin(u) = Nin(v) and Nout(u) = Nout(v).

In other words, two vertices u and v are structurally equivalent if u has

Figure 9.17: The graph of 2006 top-200 most influential people in The Netherlands.
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arcs to exactly the same vertices as v, but also all vertices that are linked
to u are linked to v. Indeed, from the perspective of a network, vertices u
and v are indistinguishable. Structural equivalence can easily be defined
for undirected graphs as well, in which case we require that N(u) = N(v).
Figure 9.18 shows a simple social network with two structurally equivalent
vertices u and v.

u

u

v

v

1 1

22

Figure 9.18: A simple social network with structural equivalent vertices u1 and u2.

The formal definition of structural equivalence is rather strict. For exam-
ple, if u and v are each other’s neighbor, then by definition they can never
be structurally equivalent. For this specific situation, equivalence between
two vertices u and v may exclude these two vertices from the respective sets
of neighbors. In that case, vertices v1 and v2 from Figure 9.18 would also
be structurally equivalent. But even then it is highly unlikely to see any
two actors in practical situations to have exactly the same neighbors. For
this reason it makes sense to not look for strict equivalence but to seek for
a weaker form in which two vertices are “almost” equivalent. To this end
we can define the following distance metric to express the extent that two
vertices are the same.

Definition 9.15: Consider a (strict) directed graph D with vertex set V(D) =
{v1, . . . , vn} and adjacency matrix A. The Euclidean distance d(vi, vj) between
two vertices vi and vj is defined as:

d(vi, vj)
def
=

√
n

∑
k=1

(
(A[i, k]−A[j, k])2 + (A[k, i]−A[k, j])2

)
Recall that for a strict directed graph, A[i, j] = 1 if and only if there is an arc
from vi to vj. As a consequence, d(vi, vj) = 0 if and only if vertices vi and vj
are structurally equivalent: for each k, A[i, k] = A[j, k] and A[k, i] = A[k, j].

The Euclidean distance between two vertices now gives us a measure
to see to what extent two vertices are structurally equivalent. Consider the
graph shown in Figure 9.19(a). It is not difficult to see that v1 and v2 are
structurally equivalent, but it would also appear that v3 and v4 are struc-
turally very similar. If we compute the Euclidean distances, shown in Fig-
ure 9.19(b), we see that indeed v3 and v4 are relatively close to each other
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v

v
v

v v

v

1

2
4

3
6

5

v1 v2 v3 v4 v5 v6

v1 0.000 0.000 2.236 2.646 2.236 2.236
v2 0.000 0.000 2.236 2.646 2.236 2.236
v3 2.236 2.236 0.000 1.414 2.828 2.449
v4 2.646 2.646 1.414 0.000 2.449 2.000
v5 2.236 2.236 2.828 2.449 0.000 1.414
v6 2.236 2.236 2.449 2.000 1.414 0.000

(a) (b)

Figure 9.19: (a) A directed graph and (b) the Euclidean distances between its ver-
tices.

in comparison to other pairs of nonequivalent vertices. We leave it as an
exercise to the reader to actually compute the various Euclidean distances.

Note 9.8
To get an impression of what the chances are of being structurally equivalent,
let’s consider a directed ER(n, p) random graph for which p indicates the prob-
ability that there is an arc 〈−→u, v〉 for an arbitrarily chosen pair of vertices u and
v. The probability that two vertices u and v have an arc to the same vertex w,
is obviously p2. If both have outdegree kout, then the probability that they have
exactly the same set of out-neighbors is equal to (n−2

kout
)(p2)kout (1− p2)n−2−kout .

Likewise, if they both have indegree kin, the probability of having exactly the
same set of in-neighbors is equal to (n−2

kin
)(p2)kin (1− p2)n−2−kin . Given the fact

that even having the same vertex degree can be rather low, it is not hard to see
that finding two structurally equivalent vertices in a directed graph is indeed
very low. Therefore, the implication of finding such nodes in real networks
means that something interesting may be going on.

18 18.5 19 19.5 20 20.5 21

500

1000

1500

2000

2500

3000

Figure 9.20: The distribution of distances in a directed ER(500, 0.25)
random graph.
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As a further illustration, Figure 9.20 shows the distribution of Euclidean
distances between pairs of vertices in a directed ER(500, 0.25) random graph.
We conclude that only very few vertices lie close to each other when taking
the Euclidean distance as metric. Again, this means that if we do find vertices
close to each other, then this should be treated as quite exceptional, which is
exactly what we hope to find when looking for what could be called structural
similarity.

Automorphic equivalence

As mentioned, structural equivalence is rather strict as it demands that the
neighbor sets of two vertices are exactly the same. In effect, two structurally
equivalent vertices are considered to be interchangeable and have the same
position in a network. However, we are often looking for nodes in a social
network that have similar roles (see also Wasserman and Faust [1994]). For
example, we may want to identify who are teachers in a school. The basic
assumption underlying such an identification is that we should look at the
structure of the subgraph surrounding specific vertices. Indeed, this brings
us to considering graph isomorphisms again, which we discussed in Sec-
tion 2.2.

In particular, we are looking for a way to exchange two vertices, along
with their respective neighbors, such that the resulting graph remains “the
same.” To make this more precise, recall first the definition of graph isomor-
phism:

Definition 9.16: Consider two graphs G = (V, E) and G∗ = (V∗, E∗). G and
G∗ are isomorphic if there exists a one-to-one mapping φ : V → V∗ such that
for every edge e ∈ E with e = 〈u, v〉, there is a unique edge e∗ ∈ E∗ with e∗ =
〈φ(u), φ(v)〉.

Keeping a graph “the same” is essentially asking whether a graph is iso-
morphic with itself, but using a nontrivial remapping of vertices. Nontrivial
means that at least some vertices are not mapped onto themselves. Formally,
we speak of an automorphism, which is defined as follows:

Definition 9.17: Consider an undirected graph G = (V, E). An automorphism is
a one-to-one mapping φ : V → V such that for every edge e ∈ E with e = 〈u, v〉,
there is a unique edge e∗ ∈ E with e∗ = 〈φ(u), φ(v)〉. An automorphism φ is
called nontrivial if at least for one vertex v ∈ V we have that φ(v) 6= v.

Note that the definition of automorphism can be easily extended to directed
graphs. We can now define when two nodes in a social network play the
same role by considering the associated (directed or undirected) graph:
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Definition 9.18: Consider a graph G. Two distinct vertices u and v are auto-
morphically equivalent if and only if there is an automorphism φ for G with
φ(u) = v.

To illustrate the idea of automorphical equivalence, consider the social
network shown in Figure 9.21. In this example, it is not difficult to see that
the two subgraphs H1 and H2 are not only isomorphic, but that they can
also be “swapped” to obtain essentially the same graph. In particular, the
mapping φ(ui) = vi will do the job. This also means that each pair of ver-
tices (ui, vi) are automorphically equivalent. Finally, note that just as in the
case of graph isomorphism, finding a (non trivial) automorphism may be a
difficult task to accomplish.

H

H

1

2

u
1

u
4

v
4

u
5

v
5

u
2

u
3

v
1

v
2

v
3

Figure 9.21: An example of a directed graph with automorphically equivalent ver-
tices.

Regular equivalence

Both structural and automorphical equivalence have relatively simple graph-
theoretical formulations, yet may be rather difficult to use in practice. As
it turns out, for sociological research, another type of equivalence is often
more important as it more naturally reflects the notion of a role [Hanneman
and Riddle, 2005]: regular equivalence. Informally, two nodes in a social
network are regularly equivalent if they fulfill the same role. The latter is
decided by taking a look at the nodes to which the two nodes are linked:
if the respective destinations are also regularly equivalent, then so are the
sources. For example, two people may be identified as regularly equivalent
because both have a link to two nurses, which had already been identified
as being regularly equivalent. In this case, the two sources may turn out to
be doctors.

An issue with this definition is that it is recursive: being regularly equiv-
alent depends on the equivalence of the targets. Formally, we have:
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Definition 9.19: Let G be an undirected graph. Two vertices u1 and u2 are said to be
regularly equivalent if for all edges 〈u1, v1〉 ∈ E(G) there is an edge 〈u2, v2〉 ∈
E(G) such that v1 and v2 are also regularly equivalent.

Another way of looking at regular equivalence is coloring the vertices of a
graph such that if two vertices u and v have the same color, then for each
neighbor of u there will be a neighbor of v with the same color. Consider
the graph shown in Figure 9.22(a), taken from Borgatti and Everett [1992].
Clearly, each black-colored vertex is adjacent to either another black-colored
vertex or a white-colored vertex. An interesting case is formed by the white-
colored vertices. Clearly, each such vertex may be joined with a vertex of
any color. However, what’s important is that for every white-colored ver-
tex joined with any vertex of color c, another white-colored vertex will be
joined with a vertex of color c as well. This is the essence of being regularly
equivalent.

(a) (b)

Figure 9.22: (a) Coloring the vertices of a graph to identify regular equivalence.
(b) An alternative coloring that also reflects structural equivalence.

Figure 9.22(b) shows an alternative coloring that also reflects structurally
equivalent vertices. In general, if two vertices are structurally equivalent,
they will also be regularly equivalent.
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We have come a long way, and for some the road has inevitably been rough.
Summarizing, there are essentially three major topics that should have been
picked up by now:

1. Basic graph theory

2. Metrics for graph analysis

3. Basics of complex network theory

Let’s consider each of these briefly.

Graph theory

Chapters 2 to 5 cover the basic material that you would find in most in-
troductory courses on graph theory. We have discussed the foundations of
graphs, including their representations and embeddings in the plane, al-
lowing us to speak more accurately about graphs that are the same. Under-
standing the foundations is important in order to make any steps in under-
standing real-world networks.

Chapter 3 can be somewhat considered as a collection of randomly col-
lected general topics on graph theory, but which form essential extensions
to the foundations discussed in the preceeding chapter. Again, we see that
real-world networks can be much easier modeled when edges can be di-
rected or have a weight. When it comes to coloring, notably the vertex col-
oring proves to come in handy when certain properties of networks need to
be shown.

There are many topics that we have not discussed that could easily be
categorized as extensions to our foundations. Examples include matchings
and independent sets, as well as a discussion of many special graphs. Also
important is the topic of network flows which we have completely ignored.
There are several more for which it can be argued that they deserve a place
in any introductory book on graph theory. However, many of these top-
ics are less relevant in light of understanding real-world networks. Instead,
they often turn out to be particularly useful in the context of optimization
problems, which lies at the heart of a field of mathematics known as opera-
tions research.

In this light, one may argue that discussing Euler tours and Hamilton
cycles, the topics of Chapter 4, could equally well have been skipped. How-
ever, these topics were felt to be so fundamental that skipping them would
not have been the right thing to do. Notably the subtle difference between
the two concepts is important, and when realizing that the traveling sales-
man problem alone is whole field of research by itself, and important for
information and computer scientists, skipping it is not really an option.
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In Chapter 5 we discussed trees, which form a recurring subject in many
courses taught for IT students. Notably the issue of routing, i.e., shortest
paths, is fundamental to understanding how information may be dissemi-
nated through a network.

Graph analysis

When we started to discuss metrics for graphs, we started to deviate from
classical texts on graph theory. Although concepts such as eccentricity and
the center of a graph can be found in many standard textbooks on graph
theory, they are not as much emphasized as they are here. Understanding
and being able to say anything sensible about real-world networks requires
a thorough understanding of graph-theoretical metrics. It is through these
metrics that it becomes possible, for example, to assess the complexity of a
network.

It is actually surprising how few metrics are generally used. What should
be less surprising is that with discrete structures such as graphs finding met-
rics that lead to a “soft” classification of networks is much more difficult. For
example, finding the center of a graph may not be very useful for a random
network, as it may easily consist of only one or very few nodes. More im-
portant is that we would be able to identify all the nodes in a center by a
more relaxed criterion than having minimal eccentricity. This is especially
true for large networks, but it may also hold for relatively small networks.

We bumped into this phenomenon a few times, notably in the case of
social networks when discussing cohesive subgroups and later structural
equivalence. What is needed are metrics that can adequately capture the
fuzziness of what we tend to call in our daily lives “cliques,” the “most
important” people or organizations, and so on. This book has only briefly
touched upon some of the attempts at grasping such metrics.

Complex networks

Finally, we have completely deviated from standard introductory textbooks
on graph theory with the material covered by Chapter 7 through 9, with the
exception of some material about social networks.

Complex networks in many senses capture what we can observe in real
life and for that reason alone they are important to study. Graph theory
forms the foundations for understanding complex networks and the first
part of the book should be sufficient to make a next step.

Chapter 7 provides the fundamentals for going into the real-world net-
works discussed later in the book. The three types of random networks—
Erdös-Rényi graphs, Watts-Strogatz graphs, and scale-free networks—form
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the basis for classifying real-world networks. Notably the combination of
small-world properties and high clustering as witnessed in the case of scale-
free networks is important.

We actually discussed only very few real-world complex networks with
the Internet and Web from Chapter 8 being the most illustrative, along with
the structured and unstructured peer-to-peer networks. There are many
examples of complex networks to be found in fields such as transporta-
tion, neurology, biology, financial markets, language, etc. With the exam-
ples given in Chapter 8 it should not be too difficult to take further steps in
understanding such networks. Again, it is important to consider how ex-
actly complex networks are measured. We encountered that in many cases
the networks can be so large that we need to resort to sampling techniques,
which immediately brings up the problem of data validity. In other words,
is our sample good enough to be representative for the entire network? We
saw that in the case of the Web, answering this question may be far from
trivial.

Social networks, discussed in Chapter 9, in many ways brought us back
to more traditional graph theory. One could consider many social network
tools to form an extension to graph theory as discussed in Chapter 2, but
targeted to a specific field of study. What we have not discussed is the
link between traditional social networks and social online communities, an
emerging subdiscipline in the field of network science. As may be expected,
social online communities exhibit many of the properties common to com-
plex networks, yet at the same time become interesting when we attempt to
discover social structures. Again, with the material covered in the second
half of the book, the reader should be able to easily follow the literature on
complex social networks.

Next steps and suggested textbooks

After having ploughed through this book, a wide range of topics lie open
for further exploration. In the first place, for those who have become more
interested in math and graph theory, there are many excellent textbooks that
can be picked up from here. A good starting point is formed by West [2001],
although many will still appreciate the somewhat outdated, yet excellent
work described in Bondy and Murty [1976]. Another good and certainly
gentle introduction is provided by Aldous and Wilson [2000], who put much
less emphasis on formal notations than we have done. When it comes to un-
derstanding proofs and mathematical notations, Velleman [2006] is highly
recommended.

There are few topics in graph theory to which entire books have been
devoted. Some of the ones that will now make a lot of sense and will cer-
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tainly be appreciated are the following two. First, Wilson [2004] provides
a very nice and interesting historical read on the four-color problem. The
importance of the traveling salesman problem should have become clear by
now. An excellent description of what it takes to put it to practice is de-
scribed in Applegate et al. [2007], although it does require going through
some more serious math.

There are not many books that concentrate entirely on network analysis.
Brandes and Erlebach [2005] contains a collection of articles that describe
different aspects of network analysis, including a chapter on various met-
rics. It may be useful as background material and at the same time a concise
reference to various graph-theoretical foundations.

When it comes to complex networks, an excellent starting point is formed
by Barabási [2002], an exceptionally well-written book that will mostly likely
trigger further interest into the topic. Equally recommended is Watts [2003]
which also concentrates on complex networks. Complexity in general is dis-
cussed in Mitchell [2009], a very accessible read into the fascinating field of
what is called complexity research. When it comes to getting an overview
of all the important publications that gave form to the research into com-
plex networks, Newman et al. [2006] is the place to go. This edited book is
a collection of original papers on random graphs, scale-free networks, the
structure of the Web and so on. Going through some serious math is some-
times needed, but rewarding.

Finally, for those who have picked up an interest in social network anal-
ysis, a good point to start is Knoke and Yang [2008]. Scott [2000] pro-
vides an excellent overview on different topics, treating them in indepen-
dent chapters. The definitive guide to social network analysis, however,
remains Wasserman and Faust [1994]. An extensive, yet reasonably acces-
sible piece of work. Finally, going from structure to content, Christakis and
Fowler [2009] concentrate less on the structure of social networks and in-
stead attempt to discover and explain the meaning behind links in social
networks and what information can be derived from those networks.
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MATHEMATICAL NOTATIONS

Basic set notations
N The set of natural numbers.
R The set of real numbers.
|S| The size of a (finite) set S.
min S The smallest value found in set S.
max S The largest value found in set S.
∀ The universal quantifier, used in statements such as

“for all ...”.
∃ The existential quantifier, used in statements such as

“there exists ...”.
x ∈ S Element x is a member of set S.
V\W The set V excluding elements that are also member

of W.
V ⊆W Denotes that the set V is a subset of W, and possibly

equal to W.
V ⊂W Denotes that V is a proper subset of W, i.e., V ⊆ W

and V 6= W.
V ∩W The intersection of the two sets V and W.⋂n

i=1 Vi The intersection of n sets: V1 ∩V2 ∩ · · · ∩Vn
V ∪W The union of the two sets V and W.⋃n

i=1 Vi The union of n sets: V1 ∪V2 ∪ · · · ∪Vn

General mathematical notations
dxe The smallest natural number greater or equal to x.
bxc The largest natural number smaller or equal to x.
n! To be pronounced as n factorial: n! def

= n · (n − 1) ·
(n− 2) · · · 1.

n� k The fact that n is much larger than k.
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∑ Summation, such as ∑n
i=1 xi, meaning x1 + x2 + · · ·+

xn.
Π Multiplication, such as Πn

i=1xi, meaning x1 × x2 ×
· · · × xn.

[a1, a2, . . . an] The (ordered) sequence of elements a1, a2, . . . , an.
x ← S x takes the value resulting from the expression S,

pronounced as “x becomes S”.
f (x) ∼ O(g(x)) f (x) is bounded by g(x): ∃M ∀x > x0 : | f (x)| <

M · |g(x)|
f (x) ∼ Ω(g(x) f (x) is bounded from below by g(x): ∃M ∀x > x0 :

| f (x)| > M · |g(x)|. This also means that g(x) ∼
O( f (x)).

f (x) ∼ Θ(g(x)) f (x) follows the same form as g(x): ∃M, M′ ∀x >
x0 : M′|g(x)| < | f (x)| < M|g(x)|.

General graph-theory notations
G = (V, E) The undirected graph G with vertex set V and edge

set E.
〈u, v〉 The fact that vertex u and v are joined by an edge,

that is, they are adjacent.
¬〈u, v〉 The fact that vertex u and v are not adjacent.
D = (V, A) The directed graph D with vertex set V and arc set A.
〈−→u, v〉 The fact that vertex u and v are joined by an arc from

u to v.
G[V∗] The graph induced by the set of vertices V∗ ⊆ V(G).
G[E∗] The graph induced by the set of edges E∗ ⊆ E(G).
H ⊆ G H is a subgraph of G.
G− v The graph induced by V(G)\{v}.
G− e The graph induced by E(G)\{e}.
Kn The complete graph on n > 0 vertices.
Km,n The complete bipartite graph with with two vertex

sets of size m and n, respectively.
G The complement of graph G, i.e., the graph obtained

from G by removing its edges and joining vertices
that were nonadjacent in G.

Hk,n A k-connected graph with n vertices and a minimal
number of edges: a Harary graph.

N(v) The set of neighbors of vertex v.
Nin(v) The set of in-neighbors of vertex v.
Nout(v) The set of out-neighbors of vertex v.
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δ(v) The degree of vertex v, i.e., the number of incident
edges.

δin(v) The indegree of vertex v, i.e., the number of incoming
arcs at v.

δout(v) The outdegree of vertex v, i.e., the number of outgo-
ing arcs from v.

∆(G) The maximal degree of any vertex in graph G:
max{δ(v)|v ∈ V(G)}.

Metrics on graphs
d(u, v) The geodesic distance between vertex u and v. This

is either a minimal-length (u, v)-path or a minimal-
weight (u, v)-path..

ε(u) The eccentricity of vertex u: the maximum distance
of u to any other vertex.

τ(G) The network transitivity of graph G: the ratio be-
tween the number of triangles and triples in G.

cC(u) The closeness of vertex u (in a graph G), measured as
the reciproke of the total distance u has to the other
vertices of G.

cB(u) The betweenness centrality of vertex u: the ratio of
shortest paths between two vertices that go through
u.

cE(u) The vertex centrality of u: the reciproke of its eccen-
tricity.

diam(G) The diameter of graph G: the length of the longest
shortest path between any two vertices, i.e., the max-
imal eccentricity among the vertices of G.

rad(G) The radius of graph G: the minimal eccentricity
among its vertices.

C(G) The center of graph G: the set of vertices for which
the eccentricity is the same as the radius of G.

cc(v) The clustering coefficient of vertex v.
CC(G) The average clustering coefficient measured over all

vertices of graph G.
ω(G) The number of components of graph G.
κ(G) The size of a minimal vertex cut of graph G.
λ(G) The size of a minimal edge cut of graph G.
χ′(G) The edge chromatic number of G: the minimal k for

which graph G is k-edge colorable.
χ(G) The chromatic number of G: the minimal k for which

graph G is k-vertex colorable.
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Probabilities
P[δ = k] The probability that the degree (of an arbitrarily cho-

sen vertex) is equal to k.
P[k] An abbreviation for P[δ = k].
E[X] The expected value of the random variable X (often

corresponding to the mean).

Special classes of graphs
ER(n, p) The collection of Erdös-Rényi random graphs with n

vertices and probability p that two distinct vertices
are joined.

WS(n, k, p) The collection of Watts-Strogatz random graphs with
n vertices, initial vertex degree k and rewiring prob-
ability p.

BA(n, n0, m) The collection of Barabási-Albert random graphs
with n vertices, n0 initial vertices and a growth of m
edges at each step.

270



INDEX

k-regular graph, 23

access network, 191
acyclic graph, 51
address, 188

MAC, 189
address, host identifier, 190
address,IP, 189
address,network identifier, 190
adjacency matrix, 31, 138

symmetric, 31
adjacent vertices, 19
ADSL connection, 103
algorithm

breadth first, 62
arc, 57

head, 58
tail, 58

AS, see autonomous system
AS number, 192
AS topology, 192
assortative mixing, 137
automorphic equivalence, see equiv-

alence
automorphism, 258
autonomous system, 192
average path length, 141

BA graph, see random graph

Barabási-Albert graph, see random
graph

Bellman-Ford algorithm, 124
betweenness centrality, 152, 227,

233, 234
BGP, see Border Gateway Protocol
big O notation, 128
binomial distribution, 159
bipartite graph, 46

complete, 53
block modeling, 229
border gateway, see gateway, bor-

der
Border Gateway Protocol, 193
bowtie, see Web graph

center of a graph, 151
characteristic path length, 141
Chinese postman problem, 87
Chord, 197

finger table, 199
successor, 198

chromatic number, 72
circular embedding, 45
client, 195
client-server architecture, 195
clique

adjacent k-cliques, 249
community, 249
directed k-clique, 251
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k-clan, 247
k-clique, 246
k-club, 248
k-distance-clique, 247
maximal, 246

clique percolation, 249
closed walk, 37
closed walk, 83
closeness, 151, 233, 234
clustering

global view, 147
local view, 144

clustering coefficient
of a vertex, 163
of a directed graph, 145
of a graph, 144
of a vertex, 144, 145
of a vertex in a weighted graph,

145
cohesive subgroup, 246
communication

heliographic, 4
telegraphic, 4

communication protocol, 5
complete bipartite graph, 53
complete graph, 19
complex network, 3
component, 38
computationally efficient, 130
computationally inefficient, 130
connected world, 4
connected graph, 37
connected vertices, 37
connectivity

k-connected, 39
k-edge-connected, 39
optimally connected, 39

connector problem, 107
correlation coefficient, 137
count-to-infinity problem, 127
cubic graph, 23, 29

curve fitting, 136
cut edge, 38
cut vertex, 38, 152
cycle, 37

directed, 61
cycle time, see epidemic protocol

DAG, see directed acyclic graph
decentralized algorithm, 126
degree correlation, 138
degree correlation, 137
degree distribution

power law, 172
degree prestige, 235
degree sequence, 23

ordered, 23
DHCP, see Dynamic Host Config-

uration Protocol
DHCP server, 189
diameter, 141
digraph, 57

strongly connected, 61
weakly connected, 61

Dijkstra’s algorithm, 120
Dirac’s theorem, 95
direct proof, 73
directed cycle, 61
directed walk, 61
directed acyclic graph, 61
directed graph, 57

acyclic, 61
arc, 57
orientation, 58
strict, 58

directed k-clique, see clique
directed path, 61
directed trail, 61
DISCONNECTED, see Web graph
disconnected graph, 38
distance

between vertices, 47, 66
Euclidean, 256
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geodesic, 66, 140
DNS, see Domain Name System
Domain Name System, 213
domain name, 212
Dynamic Host Configuration Pro-

tocol, 189

eccentricity, 140, 151, 233
edge, 10, 18

duplicating, 89
end point, 19
incident, 19
loop, 19
multiple, 19, 69
weight, 65

edge list, 33
edge chromatic number, 71
edge coloring, 71

minimal, 70
edge cut, 38
edge-independent paths, 40
eigenvalue, 239
eigenvector, 238, 239
end point, see edge,end point
epidemic dissemination, 143
epidemic protocol, see peer-to-peer

cycle time, 206, 208
round, 208, 209

epidemic-based network, 204
equivalence

automorphic, 259
regular, 260

equivalence, structural, 255
ER random graph, see random graph
Euclidean distance, see distance,Euclidean
Euler constant, 162, 179
Euler tour, 83
Euler trail, 84
existential quantifier, 20
existential proof, 76, 96
expected value, see random vari-

able

finger table, see Chord
flow of control, 63, 68
forest, 51

gateway, border, 191
geodesic, 66
geodesic distance, see distance
giant component, 165
gossiping, see epidemic-based net-

works
gossiping models, 143
graph, 10

k-regular, 23
acyclic, 51
automorphism, 258
center, 151
complement, 19
component, 38
connected, 37
definition, 18
directed, 57
disconnected, 38
edge, 18
empty, 19
Hamiltonian, 92
induced, 29
isomorphism, 33, 258
join vertices, 18
line, 30
orientation, 58
planar, 50
plane, 50
regular, 23
simple, 19, 31, 58
subgraph, 29
tree, see tree
union, 29
vertex, 18, 57
weighted, 65

graph embedding
circular, 45
ranked, 46
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spring, 47
graph closure, 97
graph embedding, 45
graph theory, 13, 18
graphic, 23
grid graph, 127

Hamilton cycle, 81, 92
Hamilton path, 92
Hamiltonian graph, 92
Harary graph, 41
head, see arc,head
home network, 190
homophily, 226
host, 187
host identifier, see address, host iden-

tifier
HTML, see HyperText Markup Lan-

guage
HTTP, see HyperText Transfer Pro-

tocol
HTTP request, 213
hub, 133
hyperlink, 212, 213
HyperText Markup Language, 214
HyperText Transfer Protocol, 213

iff, 26
IN, see Web graph
in-neighbor set, 58
incidence matrix, 31
indegree, 58
independent set, 263
indirect proof, 73
induced graph, 29
infix notation, 110
influence domain, 235
interface, 119

communication, 119
Internet Protocol, 189
Internet Service Provider, 191
Internet, edge, 191

IP, see Internet Protocol
IP address, see address,IP
isomorphic graphs, 33, 258
ISP, see Internet Service Provider

k-clan, see clique,k-clan
k-clique community, see clique
k-club, see clique,k-club
k-connected graph, 39
k-core, 249
k-distance-clique, see clique
k-edge coloring, 71
k-edge-connected graph, 39
k-vertex coloring, 71

LAN, see local-area network
line graph, see graph, line
local-area network, 188
loop, see edge,loop
lower bound, 102

MAC address, see address,MAC
markup language, 214
matching, 91, 263

perfect, 92
MBone, 107
mean (of a random variable), see

random variable
median, 141
Menger, Karl, 40
message routing, 119
multiple arc, 69
multiple edge, see edge,multiple

neighbor set, 20
network

transportation, 107
network transitivity, 149
network science, 10
network density, 147, 163

sparse, 167
network flow, 263
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network identifier, see address, net-
work identifier

network science, 11
network transitivity, 147
network, access, 191
network, home, 190
network, tier 1, 192
network, tier 2, 191
network, tier 3, 191
nonconstructive proof, 27

one-mode network, 252
optimally connected graph, 39
orientation, 58
OUT, see Web graph
out-neighbor set, 58
outdegree, 58
overlay network, 109, 196

packet, 187
PageRank, 217
partial view, 196
path, 37

directed, 61
edge-independent, 40
length, 126
vertex-independent, 40

peer, 196
peer-to-peer

epidemics, 204
peer-to-peer network, 196

unstructured, 204
peering relationship, 191
perfect matching, 92
Petersen graph, 45
pigeonhole principle, 44
planar graph, 50
planar graph

exterior region, 50
face, 50
interior region, 50
region, 50

plane graph, 50
Posa’s algorithm, 99
power law distribution, see degree

distribution
preferential attachment, 174
prefix notation, 110
proof technique

extremality, 84
proof techniques

existential, 96
proof by contradiction, 44
proof by induction, 51
proof by construction, 27, 96
proof techniques

by construction, 27, 96
by contradiction, 44
by induction, 51
direct, 73
existential, 76
extremality, 96
indirect, 73

proximity prestige, 235
pseudo-code, 63

control flow, 63

radius, 140
random variable, 159
random graph, 46

Barabási-Albert, 175
ER random graph, 158
Erdös-Rényi graph, 158
Watts-Strogatz, 168

random network
seerandom graph, 158

random variable, 159
discrete, 159
expected value, 160
mean, 160

ranked embedding, 46
ranked prestige, 236
reachability analysis, 62
regular graph, 23
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regular equivalence, see equivalence
rooted tree, 109, 120
rotational transformation, 99
round, see epidemic protocol
router, 188, 189
routing, 119, 187
routing algorithm, 66
routing cost, 124
routing protocol, 119

distance vector, 126
link state, 120

routing table, 119

scale-free network, 172
scale-freeness, 139

normalized, 140
scaling exponent, 172
SCC, see Web graph, SCC
server, 195
shortest path, 47, 66
shutter telegraph, 5
sign, 240

product of, 242
signed graph, 240

balanced, 243
sink tree, 120
small-world network, 167
social balance, see structural bal-

ance
social network, 167, 225
sociogram, 10, 228, 231
sociometry, 228
spanning tree, 109
spanning walk, 81
sparse network, see network den-

sity
spider trap, 216
spring embedding, 47
standard deviation, 138
strict, see directed graph,strict
strongly connected digraph, 61

structural equivalence, see equiv-
alence

structural balance, 228, 240
subgraph, 29
super small world, 180
surface Web, 216
switch, 188

tail, see arc,tail
telegraphic communication, 4
TENDRIL, see Web graph
topology, 123
tour, 81, 83
trail, 37

directed, 61
transportation network, 107
traveling salesman problem, 93
tree, 6, 51, 68, 107

binary, 111
descendant, 111
intermediate node, 109
leaf node, 109
parent, 111
rooted, 109, 120
sink, 120
spanning, 109

triad, 228, 240
triangle, 146

at a vertex, 146
transitive, 150
weight, 149

triple
at a vertex, 146
nonvacuous, 150
weight, 149

TSP, see traveling salesman prob-
lem

TUBE, see Web graph
two-mode network, 252

underlying graph, 58
Uniform Resource Locator, 213
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URL, see Uniform Resource Loca-
tor

vertex, 10, 18, 57
adjacent, 19
degree, 21
degree correlation, 137, 138
indegree, 58
outdegree, 58
type, 137

vertex degree
distribution, 59

vertex centrality, 151, 234
vertex coloring, 71
vertex cut, 38
vertex degree, 21, 31, 32

distribution, 22
vertex degree distribution, 59
vertex reachability, 62
vertex strength, 145
vertex-independent paths, 40
virtual network, 42

walk, 37, 81
closed, 37, 83
directed, 61
spanning, 81

Watts-Strogatz random graph, 168
weak link, 168
weak tie, 230
weakly connected digraph, 61
Web subgraph

bowtie, 217
Web client, 213
Web crawling

breadth first, 216
PageRank, 217, 220
random selection, 217

Web Graph
SCC (Strongly Connected Com-

ponent), 217
Web graph, 214

DISCONNECTED, 218
IN, 217
OUT, 218
TENDRIL, 218
TUBE, 218

Web server, 213
Web site, 212
Web subgraph, 217
weight, 65
weighted average, 160
weighted clustering coefficient, 145
weighted graph, 65
World Wide Web, 212
WS random graph, see random graph,

Watts-Strogatz
WWW, see World Wide Web
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Dissemination in Distributed Systems. Computer, 37(5):60–67, May 2004. Cited on
143

Fronczak A., Fronczak P., and Holyst J. Mean-field Theory for Clustering Coeffi-
cients in Barabási-Albert Networks. Physical Review E, 68(4):046126, Oct. 2003.
Cited on 178

Fronczak A., Fronczak P., and Holyst J. Average Path Length in Random Networks.
Physical Review E, 70(5):056110, Nov. 2004. Cited on 162, 179

Garey M. and Johnson D. Computers and Intractibility: A Guide to the Theory of NP-
Completeness. Freeman, New York, 1979. Cited on 130

Gibbons A. Algorithmic Graph Theory. Cambridge University Press, Cambridge, UK,
1985. Cited on 90, 92

Goodrich M. and Tamassia R. Algorithm Design: Foundations, Analysis and Internet
Examples. John Wiley, New York, 2002. Cited on 112, 121, 129

Graham R. and Hell P. On the History of the Minimum Spanning Tree Problem.
Annals of the History of Computing, 7(1):43–57, Jan. 1985. Cited on 116

Granovetter M. The Strength of Weak Ties. American Journal of Sociology, 78(6):1360–
1380, May 1973. Cited on 230

Grötschel M. and Padberg M. Ulysses 2000: In Search of Optimal Solutions to Hard
Combinatorial Problems. Technical Report ZIB-SC-93-34, ZIB, Berlin, Nov. 1993.
Cited on 93, 94

281

http://www.geocities.com/dharwadker/hamilton
http://www.geocities.com/dharwadker/hamilton


PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Gulli A. and Signorini A. The Indexable Web is More than 11.5 Billion Pages. In 14th
International World Wide Web Conference. ACM, May 2005. Cited on 8

Haddadi H., Fay D., Jamakovic A., Maennel O., Moore A. W., Mortier R., Rio M., and
Uhlig S. Beyond Node Degree: Evaluating AS Topology Models. Technical Report
UCAM-CL-TR-725, University of Cambridge, Computer Laboratory, Cambridge,
UK, July 2008. Cited on 194

Hage P. and Harary F. Structural Models in Anthropology. Cambridge University
Press, Cambridge, UK, 1983. Cited on 147

Hall J., Hartline J. D., Karlin A. R., Saia J., and Wilkes J. On Algorithms for Efficient
Data Migration. In 12th Symposium on Discrete Algorithms, pages 620–629, New
York, NY, Jan. 2001. ACM-SIAM, ACM Press. Cited on 69

Hanneman R. and Riddle M. Introduction to Social Network Methods. Lecture
Notes, University of California at Los Angeles, CA, 2005. Cited on 259

Harary F. On the Notion of Balance of a Signed Graph. Michigan Mathematical Journal,
2(2):143–146, 1953. Cited on 243, 244

Holme P. and Kim B. Growing Scale-Free Networks with Tunable Clustering. Pysical
Review E, 65(2):026107, Jan. 2002. Cited on 182

Holzmann G. and Pehrson B. The Early History of Data Networks. IEEE Computer
Society Press, Los Alamitos, CA., 1995. Cited on 4

Huston G. Exploring Autonomous System Numbers. The Internet Protocol Journal, 9
(1):2–23, Mar. 2006. Cited on 193

Jackson M. Social and Economic Networks. Princeton University Press, Princeton, NJ,
2008. Cited on 227

Jelasity M., Voulgaris S., Guerraoui R., Kermarrec A.-M., and Steen M.van . Gossip-
based Peer Sampling. ACM Transactions on Computer Systems, 25(3), Aug. 2007.
Cited on 208

Jelasity M., Kowalczyk W., and Steen M.van . Newscast Computing. In Advanced
Computational Technologies. Romanian Academic Press, 2010. Cited on 209

Jenkins K. and Demers A. Logarithmic Harary Graphs. In 21st International Con-
ference on Distributed Computing Systems Workshops, Los Alamitos, CA., Apr. 2001.
IEEE, IEEE Computer Society Press. Cited on 42

Judd C., McClelland G., and Ryan C. Data Analysis, A Model Comparison Approach.
Routledge, Hove, UK, 2nd edition, 2009. Cited on 136, 138

Kleinberg J. The Convergence of Social and Technological Networks. Communica-
tions of the ACM, 51(11):66–72, Nov. 2008. Cited on 230

Knoke D. and Yang S. Social Network Analysis. Number 07-154 in Quantative Ap-
plications in the Social Sciences. SAGE Publications, Thousand Oaks, CA, 2nd
edition, 2008. Cited on 252, 266

Kotschutzki D., Lehmann K., Peeters L., Richter S., Tenfelde-Podehl D., and Zlo-
towski O. Centrality Indices. In Brandes U. and Erlebach T., editors, Network
Analysis, volume 3418 of Lecture Notes on Computer Science, pages 16–61. Springer-
Verlag, Berlin, 2005. Cited on 151

Kruskal J. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. Proc. American Mathematical Society, 7(1):48–50, Feb. 1956. Cited on 116

Kuan M.-K. Graphic Programming Using Odd or Even Points. Chinese Mathematics,

282



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

1:273–277, 1962. Cited on 87
Levien R., editor. Signposts in Cyberspace: The Domain Name System and Internet Nav-

igation. National Academic Research Council, Washington, DC, 2005. Cited on
213

Lewis T. G. Network Science: Theory and Practice. John Wiley, New York, 2009. Cited
on 157

Li L., Alderson D., Doyle J., and Willinger W. Towards a Theory of Scale-Free
Graphs: Definitions, Properties, and Implications. Internet Mathematics, 2(4):431–
523, 2005. Cited on 139, 140

Licklider J. and Taylor R. The Computer as a Communication Device. Science and
Technology, Apr. 1968. Cited on 9

Liu B. Web Data Mining. Springer-Verlag, Berlin, 2007. Cited on 215
Lorrain F. and White H. Structural Equivalence of Individuals in Social Networks.

Journal of Mathematical Sociology, 1:49–80, 1971. Cited on 255
Lua E., Crowcroft J., Pias M., Sharma R., and Lim S. A Survey and Comparison of

Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys & Tutorials,
7(2):22–73, Apr. 2005. Cited on 197

Luks E. Isomorphism of Graphs of Bounded Valence can be Tested in Polynomial
Time. Journal of Computer and System Sciences, 25(1):42–65, Aug. 1982. Cited on 37

Macedonia M. and Brutzman D. MBone Provides Audio and Video Across the In-
ternet. Computer, 27(4):30–36, Apr. 1994. Cited on 107

Malkin G. and Steenstrup M. Distance-Vector Routing. In Steenstrup M., editor,
Routing in Communications Networks, pages 83–98. Prentice Hall, Englewood Cliffs,
N.J., 1995. Cited on 126

Mandel J. The Statistical Analysis of Experimental Data. Dover Publications, New York,
NY, 1984. Cited on 138

McKay B. Practical Graph Isomorphism. Congressus Numerantium, 30:45–87, 1980.
Cited on 37

McQuillan J. Graph Theory Applied to Optimal Connectivity in Computer Net-
works. ACM Computer Communications Review, 7(2):13–41, Apr. 1977. Cited on 42

Michael J. Labor Dispute Reconciliation in a Forest Products Manufacturing Facility.
Forest Products Journal, 47(11):41–45, Nov. 1997. Cited on 225

Mitchell M. Complexity, A Guided Tour. Oxford University Press, Oxford, UK, 2009.
Cited on 266

Mokken J. Cliques, Clubs, and Clans. Quality and Quantity, 13(2):161–173, Apr. 1979.
Cited on 246, 247

Moy J. Link-State Routing. In Steenstrup M., editor, Routing in Communications
Networks, pages 135–157. Prentice Hall, Englewood Cliffs, N.J., 1995. Cited on 120

Newman M. Assortative Mixing in Networks. Physical Review Letters, 89:208701,
2002. Cited on 136

Newman M. The Structure and Function of Complex Networks. SIAM Review, 45:
167–256, 2003a. Cited on 146

Newman M. Mixing Patterns in Networks. Phys. Rev. E, 67(2):026126, Feb. 2003b.
Cited on 137

Newman M., Barabasi A.-L., and Watts D., editors. The Structure and Dynamics of

283



PERSONALIZED FOR

OLEXANDER.PERIG
@GMAIL.COM

Networks. Princeton University Press, Princeton, NJ, 2006. Cited on 266
Oliveira R., Zhang B., and Zhang L. In Search of the Elusive Ground Truth: The

Internet’s AS-level Connectivity Structure. In International Conference on Measure-
ments and Modeling of Computer Systems, pages 217–228, New York, NY, June 2008.
ACM, ACM Press. Cited on 195

Opsahl T. and Panzarasa P. Clustering in Weighted Networks. Social Networks, 31:
155–163, 2009. Cited on 149

Padgett J. and Ansell C. Robust Action and the Rise of the Medici, 1400–1434. Amer-
ican Journal of Sociology, 98(6):1259–1319, May 1993. Cited on 226, 227
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